
NCU-T-75-003

c. 3

March, 1975

Tech. Bul. No. 232

CIRCULATING COPY Sea Grant Depository Demand For and Cost Of Coastal Salt Marsh Mosquito Abatement

North Carolina Agricultural Experiment Station

Demand For and Cost Of Coastal Salt Marsh Mosquito Abatement

D. V. DeBord Instructor in Economics, North Carolina State University at Raleigh

G. A. Carlson Associate Professor of Economics, North Carolina State University at Raleigh

R. C. Axtell Professor of Entomology, North Carolina State University at Raleigh

North Carolina Agricultural Experiment Station (University of North Carolina Sea Grant Program Publication UNC-SG-75-11)

ACKNOWLEDGEMENTS

The authors wish to acknowledge and extend their thanks and appreciation to the many individuals and organizations that made this study possible. A large portion of the data was not published and was furnished from the files of the individual abatement districts and/or by the state agencies responsible for mosquito abatement. This required much time and effort on the part of those involved and the study would not have been possible without such excellent cooperation.

A special thanks is extended to John Mulrennan, Ernest Phelen, and M. W. Provost (Florida); D. M. Jobbins, Boyd M. Lafferty (deceased), Robert Ostergaard, Fred H. Lesser (New Jersey); R. E. Dorer (Virginia); Thomas O. Fultz, Jr. (Georgia); Warren Wheatley, Chester J. Stachechi and Robert W. Lake (Delaware), for their advice and cooperation.

Bruce Bullock, E. C. Pasour, Ron Stinner and Kenneth Knight all made helpful suggestions on the preparation of the manuscript.

The authors assume all responsibility for the manner in which the data were used and for any errors that may remain.

This research was supported in part by NOAA, Office of Sea Grant, Department of Commerce under Grant No. 04-3-158-40 and the North Carolina Department of Administration. The U.S. government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear herein.

CONTENTS

		Page
ABSTRA	CT	v
1.	INTRODUCTION AND OBJECTIVES	1
н.	ORIGINS OF MOSQUITO ABATEMENT	3
	Economic Importance of Mosquitoes	3 5
	Mosquito Biology	7
	Mosquito Abatement Procedures	é
ш.	REGIONS AND DATA ANALYZED	11
	Regions Analyzed	11
	Mosquito Numbers	12
	Mosquito Production Factors	13
	Temporary Control	16
	Permanent Control	16
	Expenditures	18
IV.	AN ECONOMIC MODEL OF MOSQUITO ABATEMENT	25
	Mosquito Abundance	27
	Temporary Control	28
	Permanent Control	28
	Abatement Demand	29
	Simultaneous Equation Model	31
	Economies of Scale	32
	Temporary Control Compared to Permanent Control	33
۷.	REGRESSION ANALYSIS	34
	Mosquito Abundance	37
	Temporary Control	39
	Permanent Control	39
	Abatement Demand	40
	Single Equation Model	42
	Economies of Scale	43
۷١.	IMPLICATIONS OF RESULTS	45
	Temporary Control Compared to Permanent Control Formation of New Abatement Districts	45 51
VEL.	SUMMARY AND CONCLUSIONS	53
REFERF	NCES	. 56
APPEND	NIX	. 59

TABLES

Table 3:1	Mosquito Abatement Districts Selected for Analysis	rage 11
Table 3:2	Thirteen-year (1959-1971) Mean Values for Temperature, Rainfali and Mosquitoes for 30 Locations; May 1 through October 31	
Table 3:3	Abatement Expenditures; Mean Annual and Per Capita Mean Annual, 30 Districts, 1959-1971	19
Table 5:1	Mosquito Abatement and Abatement Demand Regression Estimates; Simultaneous Equations 1959-1971	36
Table 5:2	Average Cost of Permanent and Temporary Abatement Procedures; Empirical Estimates – Economies of Scale Regressions, Constant 1967 Dollars	44
Table 6:1	Reduction in the Average Annual Mosquito Collection Per Light Trap Night Resulting from a 10% Increase in Permanent Abatement (Discounted) and Temporary Abatement	48
Table 6:2	Comparisons of Average Ditch Life and the Associated Expenditures Required to Reduce Annual Mean Light Trap Counts by I.O	
	E LCUIDES	

FIGURES

Figure 3:1	No. Mosquitoes Per Light Trap Night, 30 Districts, 1959–1971	20
Figure 3:2	No. Mosquitoes and Acres Chemically Treated	21
Figure 3:3	No. Mosquitoes and Acres Permanent Control	22
Figure 3:4	Abatement Expenditures; Total, Local, State, 1959-1971, Constant 1967 Dollars	23
Figure 3:5	Per Capita Abatement Expenditures; Total, Local, State, 1959-1971, Constant 1967 Dollars	24
Figure 4:1	Annoyance Threshold for Mosquito Abatement	26
Figure 4:2	Mosquito Abatement Demand Relationship	30
Figure 5:1	Average Cost of Permanent Abatement, Constant 1967 Dollars	45

APPENDICES

Appendix Table I	Individual Mosquito District Variable Descriptions and Data
	Transformation
Appendix Table 2	Individual Mosquito District Data
Appendix Table 3	Amount and Cost Per Acre of Temporary Control Work
Appendix Table 4	Amount and Cost per Acre of Permanent Control Work 8)
Appendix Table 5	Comparison of Mosquito Monitoring Data; light trap counts, landing counts and complaints
Appendix Table 6	Labor's Share of Direct Field Expenditure
Appendix Table 7	Wholesale Price Index (1967=100)
Appendix Table 8	Mosquito Abatement Regression Estimates for Single Equation Least Squares Model

ABSTRACT

Data related to mosquito (mostly salt marsh Addes) abatement activities for 30 East Coast districts for 1959 through 1971 were analyzed. A trend analysis was conducted on mosquito densities, temporary and permanent abatement work, total abatement expenditures and per capita abatement expenditures. A four-equation pest management model was utilized to examine the responsiveness of mosquito numbers to permanent and temporary abatement procedures and to analyze the factors affecting the demand for mosquito abatement. A regression model was employed to check for possible economies of scale in permanent and temporary abatement work. The estimated empirica) results of these 2 models were then utilized to determine the relative effectiveness per dollar of permanent and temporary abatement expenditures in reducing the number of mosquitoes.

Mosquito populations (as measured by the annual mean number of female mosquitoes per light-trap night) varied widely from district to district and year to year¹. The mean annual (May-October) collections ranged from 1.5 to 794 mosquitoes per trap night with an overall mean of 63.2. The 13-year trend (all locations averaged) was downward. The average number of acres under temporary control (treated with insecticides) was 484,600 and the number in any given year tended to change in the same direction as changes in mosquito numbers. The acreage under permanent control (ditched or diked) increased over the 13 years and the yearly average was 6,138 acres. Abatement expenditures were financed from local district taxes and state grants. Total expenditures increased during the 13 years, but a very high portion of the increases came from local funds.

ì٧

¹Light trap collections are a standard tool for mosquito population measurements, although they yield variable results according to the species of mosquitoes involved, trap location and environmental conditions. However, these are the only type of data available for many years from all the districts included in this study, and control measures were mainly based on light trap data in these districts. In some cases, data on landing or biting rates were available. The simple correlation between these and the light trap data was +.78 which suggests that the light trap data provided a reasonable estimate of the degree of annoyance from mosquitoes.

Total and local expenditures per capita increased throughout the period, whereas the state expenditure per capita declined.

The analysis revealed that both temporary and permanent abatement procedures significantly reduced the average mosquito population during the 13-year period. A 10% increase (above the mean annual level) in acres sprayed corresponded to a 5.7% decrease in the mean number of mosquitoes per light trap night. A 10% increase in acres under permanent control resulted in a 4.4% decrease in mosquito numbers (calculated over the 10-year life of the permanent facility). Economies of scale were shown to exist in permanent abatement work but not in temporary. The estimated relationship between control measures (temporary vs permanent) and mosquito numbers, plus estimates of costs of performing units of abatement activities, indicated that, in an "average" district, temporary chemical controls reduced from 1.4 to 3.5 times as many mosquitoes per dollar of expenditure as did permanent control measures. This condition was calculated at the sample mean, i.e., for a so-called "average size" district. Very large districts which have significantly lower costs of performing permanent, but not temporary activities, have near equal returns from permanent and temporary acres controlled. Contrarily, districts with fewer people and smaller total budgets have higher costs of lowering mean level of mosquito abundance by permanent control than by chemical control in terms of direct field cost. This study only evaluated the direct dollar costs and the associated change in the number of mosquitoes and did not attempt to evaluate any of the other effects of abatement work.

The demand for abatement, as measured by local per capita expenditures, was determined to be significantly affected by income, state grants for abatement, tourism, the wage rate (a proxy for price), and population. State grants stimulated local expenditures rather than substituted for them. For the average district, it was found that a \$1.00 increase in state grants caused local expenditures to increase by \$.90, other things being equal. Abatement demand was found to be elastic, i.e., each 1% <u>increase</u> in the abatement price caused the quantity demanded to <u>decrease</u> by 1.7%.

The implications of these results are discussed in relation to the formation of new mosquito abatement districts or the expansion of existing programs. vi

Demand For and Cost Of Coastal Salt Marsh Mosquito Abatement

I. INTRODUCTION AND OBJECTIVES

Mosquito control or abatement in coastal regions has become a controversial issue in recent years because of the potential environmental problems related to the use of insecticides and alterations of marsh areas as methods of control (Water Resources Research Institute, 1970). There is concern that these activities may be destroying wildlife and fish habitat that is critical to man's welfare. In spite of these concerns, public agencies are engaging in a considerable amount of abatement activity.

This mosquito control or abatement work uses large quantities of resources each year. In 1971, \$38 million were expended by 191 publiclyfunded mosquito abatement districts (American Mosquito Control Association, 1972). The states of Florida and California accounted for the largest expenditures, \$11 and \$10 million, respectively, but other coastal areas are growing in importance. Of particular interest in this study are the salt marsh mosquito areas of the East Coast states where the principal pest species are Aedes sollicitans (Walker) and Aedes taeniorhynchus (Wiedemann).

Mosquitoes have caused sizeable economic losses to infested areas, although data on this are limited. It is well known that several human diseases may be transmitted by mosquitoes; this results in economic losses in the form of medical care costs, medicine, loss of worktime and even death. Annoyances to humans can lead to reduced labor efficiency, decreases in numbers of tourists, and depressed land values in infested

areas. Livestock and poultry output may fall with increases in mosquito density. Through time, disease transmission has become less of a problem and land development and tourism are more frequently given as reasons for control.

The problem which this study investigates is the determination of economically efficient utilization of resources for mosquito control in the coastal areas. Have the control procedures been effective in reducing mosquito densities? If so, which procedures are the most effective in terms of mosquito reduction per dollar of expenditure? How much are people willing to pay for control and what are the main factors influencing the demand for control?

Mosquitoes are controlled by both private individuals and public agencies. If there are economies of scale in abatement or reduced cost in area-wide treatment because of pest mobility, then public provision of control may be preferred to private control. Private control may be advantageous in sparsely populated areas or areas in which pest densities differ greatly. Each of these and other factors need to be considered in making decisions on the formation of new control districts.

Control activities in the coastal areas can be divided into "permanent" and "temporary" measures. "Permanent" refers to ditching and impoundment operations on salt marshes to reduce the breeding areas, while "temporary" includes application of pesticides (against both the adult and the larval stages of the mosquitoes). There have been attempts to evaluate the effectiveness of ditching and impoundments (LaSalle and Knight, 1973, 1974; Dukes, et al 1974) and pesticides (Schoof, 1970) in reducing mosquito populations. Yet, no effort has been devoted to combining evaluation of costs and reduced populations to determine which control methods are <u>economically</u> the most efficient.

Since mosquito densities are affected by weather phenomena which occur irregularly (such as hurricanes, rainfall periods) and by permanent control measures (such as ditches) which have long lives (5-15 years), it is necessary to examine long periods of abatement activities. In addition, the demand for and cost of control is thought to vary with many economic, biological, and climatological characteristics which vary across control districts. For these reasons, this study examines data from 30 East Coast mosquito control districts for a period of 13 years (1959-1971). Complete data were not available in this number of districts for a longer period of time.

OBJECTIVES

The overall objective of this study was to determine the costs of and demand for salt marsh mosquito abatement. The specific objectives were to:

- Collect and summarize information on the activities of publicly-funded abatement districts to gain an understanding of the existing cost-pest density situation.
- Specify and estimate the parameters of a model explaining abatement of salt marsh mosquitoes to determine the relative costs of temporary and permanent control activities.
- Determine how various economic factors and mosquito abundance affect the demand for mosquito abatement.
- Estimate the effects of the scale of operation on control costs.
- Examine the prospects for raising local abatement revenue in other coastal areas, especially in North Carolina.

II. ORIGINS OF MOSQUITO ABATEMENT

ECONOMIC IMPORTANCE OF MOSQUITOES

The presence of excessive numbers of mosquitoes has presumably caused serious economic losses to infested communities. Retarded economic progress can occur because mosquitoes hinder agricultural production, decrease the number of tourists and vacationers to an area, present an unfavorable influence on those planning to establish or expand businesses, and delay the sale and development of real estate (White, 1957).

Historically, mosquitoes have taken a heavy toll on human and animal

life as there are 13 communicable human diseases and numerous communicable animal diseases carried by the mosquito (White, 1957; James and Harwood, 1969; Horsfall, 1955, 1962). The diseases of malaria, yellow fever and encephalitis have at times reached epidemic stages in the United States. Yellow fever and malaria have been essentially eradicated, although occasional cases still occur (mainly due to importations from foreign countries). Dog heartworm is a severe problem and encephalitis continues to exhibit periodic outbreaks in horses, mules, and humans. Salt marsh Aedes mosquitoes are not involved in all these diseases but to varying degrees can function in the transmission of dog heartworms, encephalitis, and other diseases. Other species of mosquitoes (some associated with the marshes and others in upland habitats) in the coastal areas are involved in the epidemeology of these various diseases. Consequently, the overall program for mosquito control in a district has justification in preventing or reducing the potential for outbreaks of diseases among men and animals.

To illustrate the economic effects of a mosquito-borne disease, considerable information is available on malaria. In the early part of this century, malaria was of considerable importance. There were an estimated 1,500,000 and 2,700,000 cases of malaria in the United States in 1932 and 1934, respectively (National Resources Committee, 1938). This report estimated one death per 600 malaria cases and a minimum loss of 3.33 to 6.67 working days per malaria case. This amounted to 4,500 deaths and from 8.9 to 18.0 million sick days for the cases estimated for 1934. Additional costs were imposed by the lower efficiency of workers who returned to work and the associated cost of medical care and medicines.

One method of determining economic loss is to add dollar losses of the economic value of life, the cost of medical services and medicines, the value of lost working time, and the value of lost production due to the lower efficiency of workers. This would provide a minimum estimate of the total costs imposed by mosquitoes (Rice, 1968).

Economic costs are imposed through losses due to the nuisance aspects of mosquitoes. Not all mosquitoes are carriers of disease, but they surely influence the quality of life. A statement by the United States Public Health Service summarizes this situation (White, 1957): "Public health has become something more than the absence of disease. Physical efficiency and comfort, on which mental equanimity depends to a substantial degree, can be seriously disturbed by the continued annoyance of pestiferous mosquitoes which may or may not have disease-transmitting potentialities."

The presence of mosquitoes also hinders agricultural operation, both the raising of livestock and the production of crops. Excessive numbers of mosquitoes may affect the efficiency of livestock operations by reducing the weight gain and feed intake of market animals or the weight and condition of breeding animals. A study in southern Louisiana showed mosquito populations caused statistically significant and economically damaging reductions in the average daily gain of feedlot steers (Steelman et al, 1972). Another study estimated that cattle producers suffered a loss of \$231,250 because of mosquitoes in Cameron Parish, Louisiana, during the 1962 mosquito season (Hoffman and McDuffie, 1962). Mosquitoes may cause crop losses by interfering with the harvesting of perishable crops at the proper time. Additional workers may be needed to avoid such losses.

Areas dependent on tourist and recreation trade suffer because of mosquitoes (and other biting flies). People on pleasure trips and vacations leave hotels, beaches and camp sites if mosquitoes are numerous, and they warn others about the discomfort of such places. The loss of business affects not only the specific business enterprise but the economic well being of the entire community.

The above illustrations provide a glimpse of how mosquitoes have affected people. Attention was initially focused on the mosquito because it was a vector of disease. Once the disease aspect was brought under control, emphasis gradually turned to the nuisance aspect and secondary infections as contrasted with disease prevention <u>per se</u> (Herms and Gray, 1940).

MOSQUITO BIOLOGY

The mosquitoes that create problems in the coastal regions of Southeastern United States are mainly the salt marsh species, Aedes sollicitans (Waiker) and Aedes taeniorhynchus (Wiedemann). These salt

- 4

marsh Addes mosquitoes are temporary water breeders since they lay their eggs on moist soil (not on the water surface), and the eggs require a period of drying (or conditioning) before they will successfully hatch upon subsequent flooding with water. There are other mosquitoes which are called permanent water breeders because they lay their eggs on the water surface, and their eggs hatch without any period of drying. Certain permanent water breeders (Anopheles spp. and Culex spp.) are found in standing water in portions of coastal marshes as well as in upland sites. However, the coastal control programs are designed to alleviate the problem of Aedes sollicitans and Aedes taeniorhynchus, and these species constituted the vast majority of the specimens collected in the light traps of the districts we examined.

The salt marsh Aedes lay their eggs on the moist soil in the marshes. This usually occurs in areas of the marsh which are slightly higher in elevation than the normal high tides so that they are only irregularly or intermittently flooded (by exceptional high tides, unusual amounts of rainfall, wind tides, etc.). Once the egg is deposited, it takes 2 to 3 days of conditioning time for it to become ready to hatch when subsequently flooded with water. The eggs may remain dry for several months and still retain their viability. When the "conditioned eggs" are flooded by heavy rains or abnormal tides, the eggs hatch into larvae. The larva develops through four stages and then becomes a pupa from which the adult mosquito emerges. This cycle may require only a few days in warm weather. If the eggs are flooded before they become conditioned, they will not hatch until once again subjected to a period of drying. Hence, the sequence of flooding (and, therefore, the sequence of rainfall as well as tide levels) is a very important factor in mosquito production. Within the first or second night after emergence, the adult usually takes off on a migratory flight that is often downwind. Salt marsh Acdes mosquitoes are strong fliers and fierce biters and commonly fly as much as 10 miles from their breeding site but have been known to fly much further. Once the flight is over, mosquitoes begin biting to obtain a blood meal that is necessary for their survival.

When favorable conditions occur, eggs that have accumulated for months may hatch almost simultaneously, thus causing heavy infestations of mosquitoes. Huge broods of mosquitoes can occur within 7 to 10 days after unusually high tides or heavy rains, provided the temperature is at least 68° F.. Salt marsh mosquitoes live approximately 3 weeks, and where frosts occur, they generally die out during the winter months. The eggs that were deposited in the late fall produce the mosquitoes for the next season. The mosquito season usually begins the first week of May and ends the last of October and, therefore, data for that period are used in this study. Of course, the beginning and end depends on the temperature in any given year or locality, because the temperature greatly affects mosquito activity.

The above is a brief summary of the biology of salt marsh Aedes to provide a basis for understanding the relevance of the control measures to be analyzed. Further details of the biology can be obtained from the extensive literature, including: Axtell (1974a), Clements (1963), Haeger (1960), Headlee (1945), Knight and Baker (1962), Nielsen and Nielsen (1953), Provost (1958), Travis and Bradley (1943).

MOSQUITO ABATEMENT PROCEDURES

The procedures for publicly-organized abatement of mosquitoes can be separated into two categories, permanent and temporary. Permanent control activities are designed to alter the environment so as to either destroy places in which mosquitoes breed or to render them unsuitable for propagation. Temporary control measures involve the use of chemicals to kill the larvae (larviciding) and adults (adulticiding). Temporary control measures are effective only for a short period of time, and they do not alter the physical environment to the extent that permanent activities do.

Permanent control procedures include impounding and ditching. Impoundments consist of dikes constructed to contain the water within an area and prevent the drying/flooding cycle that is necessary for the egg deposition and hatching. The ditching operation consists of constructing ditches throughout the marsh area to increase the rate of water runoff after unusually high tides or rainfall. The ditches are constructed in such a manner as to have them all connect to existing natural waterways or to larger ditches that empty into a major body of water. Mosquito breeding occurs when the eggs are flooded and the water is trapped in some depression and permitted to stand long enough for the larvae to develop into pupae and the adult mosquitoes to emerge. Ditching is designed to prevent the water from remaining long enough for this to occur. Ditches are permanent installations and require maintenance only every 5 to 12 years, depending on the area. Ditches are constructed differently in different locations because of differences in vegetation, soil type, and tidal action. The main variation comes in width of the ditches as different conditions require different sizes to obtain proper drainage and stable sides, and accordingly the ditches have various lengths of life.

Temporary chemical control measures involve the application of insecticides to kill the adult or the larval stage of the mosquitoes (American Mosquito Control Association, 1968). Application may be by ground-operated equipment or by aircraft. The method depends on the terrain and circumstances. A large part of the adult control is usually by truck-mounted foggers operated in the areas inhabited by people. In recent years (since 1971) the fogging machines have been rapidly replaced by ULV (ultra low volume) machines which are reported to have much lower operating costs (Fultz et al, 1972). Larval control requires treating the water where larvae are found. This involves inspections and frequently the use of hand-carried sprayers, boats, and aircraft in the coastal marsh situations. Due to the irregular occurrence of broods of salt marsh Aedes, larviciding requires proper timing and is often difficult to accomplish effectively.

Permanent abatement procedures are long term in nature and are not designed to instantly reduce the number of mosquitoes. Temporary outbreaks are controlled by chemical application. In practice, use of chemicals can be considered to be effective for one day in the case of adulticiding and for several days for larviciding.

Officials of the mosquito district make the decision concerning the level of abatement activity to undertake. In order to determine the extent of the mosquito problem, the districts monitor the mosquito population. The most widely used monitoring method is the New Jersey light trap. This trap is a device which contains a fan beneath a light which attracts the adult mosquito. Upon entering the light trap, the mosquito is blown into a collection jar and killed by a chemical. The traps are emptied on a regular schedule and the mosquitoes are counted and identified. Mosquito districts operate a number of these traps during the mosquito season and use the collection size as an estimate of the intensity of the mosquito problem. The light trap is the most widely used method of monitoring, although other methods, such as landing counts and residents' complaints are used to supplement light trap counts.

ORGANIZATION AND FINANCING OF MOSQUITO DISTRICTS

Nany local areas have organized to provide abatement on a public basis. The first state to pass legislation enabling the establishment of mosquito control commissions was New Jersey in 1912. Florida passed similar legislation in 1929, Virginia in 1930 and Delaware in 1933. Similar legislation was enacted in North Carolina in 1957 (North Carolina Statutes, Chapter 130, Article 24). The procedure for forming districts, the purpose and duties, the structure of the governing bodies and the corporate powers were similar for all the states.

Most of the districts included in this study are located in Florida, so Florida's enabling legislation was analyzed (Florida Statutes, 1959). Any city, town, or county, or portion thereof, or parts of two or more counties could be created into a special taxing district for the control of mosquitoes or other arthropods of public health significance. The formation of the district was accomplished by 15 percent of the resident freeholders signing a petition for the creation of the district. If upon election, the proposal received a majority of the votes cast, a second election was held for the selection of 3 commissioners to serve on the board. The commissioners were given the power to levy upon all of the real and personal taxable property within the district a special tax, not exceeding 10 mills on the dollar, as a maintenance tax to be used solely for the purposes of mosquito work. They were given all the powers of a corporate body such as the power to sue, to enter into contracts, to own real estate, to employ a field director and other trained personnel and in general to do all things necessary to provide control of mosquitoes. Districts were required to submit detailed plans of operation and budgets to the State Board of Health at least 90 days prior to the initiation of operation or each fiscal year. A public hearing was

8

required to be held, at which time the opportunity was afforded to owners of property, or their agent, to appear before the board, examine the work plan and budget, and to show their objections to the adoption of the proposed budget. The board gives consideration to objection filed against the adoption of the budget, and, at its discretion, may amend, modify, or change the tenative work plan. A certified budget is then drawn up and submitted to the State Board for approval.

The State of Florida has made provision for state aid to the local districts. Each district submitting a certified budget is eligible to receive state funds on a dollar-for-dollar matching basis up to, but not exceeding, \$15,000. These funds may be expended for any and all types of control measures approved by the State Board. In addition, every district unit is eligible to receive state funds for permanent control procedures, exclusively, up to but not exceeding 75% of the amount budgeted in local funds. The State Board prorates these funds on the amount of matchable local funds budgeted. The state and local funds budgeted can be carried over at the end of the year and rebudgeted for the following fiscal year.

The rationale for providing state aid was to have individuals living outside the district share in the cost of abatement work. Citizens visiting the abatement areas share the benefits of fewer mosquitoes just as do the local residents. Also, fewer mosquitoes promotes economic development of the area which contributes benefits to the entire state. In the case of the coastal abatement districts, the tourist-based industry is particularly important and portions of the state other than the coast would receive benefits from increased tourism.

The provision of majority rule was very important because it prevented areas from withdrawing and thereby gaining mosquito abatement from surrounding district without paying. There was one such case in Florida (Young, 1964). The Ponte Vedra community attempted to withdraw from the St. John's County Anastasia Mosquito district, but the State Attorney General ruled they could not. If Ponte Vedra was permitted to withdraw from the district, it would provide a precedent for other communities to withdraw from county abatement districts.

111. REGIONS AND DATA ANALYZED

There were 259 publicly-funded mosquito districts in the United States in 1972 (American Mosquito Control Association, 1972). These districts were located in 26 states and served an area of 135,344 square miles.

REGIONS ANALYZED

Thirty districts were selected for analysis. The selection criteria were location and length of time of operation. The districts are listed in Table 3:1.

Table 3:1 - Mosquito Abatement Districts Selected for Analysis

. . . .

	Regions Analyzed	
<u>Florida</u> ª	<u>Florida</u> (cont.)	Georgia
Brevard County	Manatee County Martin County	Chatham County
Broward County Charlotte County Citrus County	Monroe County Nassau County	<u>Virginia</u> Virginia Beach
Collier County Duval County	Palm Beach County Pinellas County St. Johns County	<u>Delaware</u> Entire State
Escambia County Franklin County Hillsborough County Indian River County Lee County Levy County	St. Lucie County Santa Rosa County Sarasota County Volusia County Walton County	<u>New Jersey</u> Cape May Monmouth Ocean

^aCounties having more than one district were treated as if they were 1 unit by combining the data from the individual districts.

The selected districts are located in 5 states in Mid-Atlantic and Southeastern regions of the United States. The reasons for choosing districts within one geographic section were twofold. First, the nature of the analysis required the area to be homogeneous with respect to the type of mosquito encountered. This analysis was aimed at the salt marsh Aedes species, so only the coastal areas were considered. The location was further restricted to the Mid-Atlantic and Southeastern coast of the United States because the species of mosquitoes encountered were mainly Aedes sollicitans and Aedes taeniorhynchus, and environmental conditions were similar within the selected regions. Secondly, the practical difficulty of obtaining the necessary data from the districts was diminished. Very little data concerning districts' operations were available from secondary sources, and visits to the appropriate agencies were required to obtain the needed information.

The time period selected was the years 1959 through 1971. The length of the time period is important because the permanent abatement activities require a substantial period of time for completion and the resulting installations last for many years. In order to ascertain the impact of such activities, a long span of time was required. Also, the longer the time period, the greater the range in environmental conditions and in the number of mosquitoes. The 13-year time period permits the evaluation of trends and long-term effects, whereas a shorter time period would be less satisfactory for this purpose. Thirteen years was the longest data base available.

MOSQUITO NUMBERS

Light traps are a standard tool for measuring mosquito populations even though the trap efficiencies vary considerably with different mosquito species, environmental conditions and location. Light trap collections were the only type of data which were available for many years from all the districts included in this study, and control measures were mainly based on light trap data in these districts. The data used from these districts were mean number of female mosquitoes per light trap per night during May-October for each year. This included a variety of species in low numbers, but the vast majority were salt marsh Aedes {A. sollicitans and A. taeniorhynchus). In 2 districts, data on landing or biting rates were also available. The sample correlation between the landing rates and the light trap data was +0.78, which suggests that the light trap data provided a reasonable estimate of the degree of annoyance from mosquitoes in an area (Appendix Table 5).

The annual mean light trap counts of female mosquitoes for the 30 districts (combined) for the 1959-1971 period are presented in Figure 3:1. (Data for each district and year are tabulated in Appendix Table 2). Data on the mosquito numbers were computed on a per-light-trap-night basis during the mosquito season, May 1 through October 31. The frequency of collection and the number of traps were different in different districts so care was exercised in obtaining the common measure of the number collected "per light trap night". This was done by dividing the total number of female mosquitoes collected by the number of traps times the number of nights in the collection. This information was furnished by the mosquito abatement agencies in each area.

The trend in the number of mosquitoes during this 13-year period was definitely downward. This is apparent upon inspection of Figure 3:1. Calculation of percentage changes from different base periods indicated the reduction was substantial. The 3-year mean from 1969-1971 was 57.4% lower than the 3-year mean for 1959-1961; the 6-year mean, 1966-1971, was 44.98% lower than the 7-year mean for 1959-1965.

MOSQUITO PRODUCTION FACTORS

The factors influencing the number of mosquitoes in a district were considered to be temperature, several rainfall characteristics, and acreage of salt marsh that possessed the necessary characteristics to support mosquito breeding. Other factors undoubtedly affect mosquito population development, but the above were considered to be the major factors that were quantifiable.

The temperature variable was measured as the mean monthly average temperature for the 6-month period, May-October. This information was obtained from reports of the U. S. Weather Bureau stations in each of the areas. There was very little variation in the annual 6-month mean for the 30 districts considered as a unit. The variation occurred between locations rather than over the years. The annual 6-month mean temperature ranged from a high of 82.1° F. in Monroe County, Florida, to a low of 66.4° F. in Ocean County, New Jersey. The overall 13-year mean temperature for 30 districts was 77.0° F.. Values for each district are presented in Table 3:2.

Rainfall was considered to influence mosquito propagation by causing marsh areas to flood, thus submerging the "conditioned" egg in water and allowing development of the next generation of mosquitoes. Rainfall data were obtained from the records of U. S. Weather Bureau station in each district. The daily precipitation for the months of May through October, 1959-1971 were tabulated.

The impact of rainfall was examined in two ways; storm rainfall and sequence rainfall. The first approach was the tabulation of periods during which excessive amounts of rainfall occurred, such as those during hurricanes and tropical storms. These storms flood vast areas of high marsh that normally are not subjected to water. The hypothesis was that the greater the rainfall during such periods the greater the flooding and, consequently, the greater the mosquito production. The amount that was considered excessive was arbitrarily designated to be 2 inches per day and consecutive periods (before or after 2-inch-days) of 1 inch per day. This was called "storm rainfall". Total annual <u>amounts</u> of rainfall which fell in such excessive periods were tabulated for each district for each year. The means over the 13-year period for each of the districts are presented in Table 3:2 as storm rainfall.

The second approach examined the sequence of the rainfall, because a wetting and drying cycle is involved in mosquito egg development. The wetting and drying period sequence utilized was a period of rainfall days (arbitrarily designated as a day on which 1/4 inch or more of rain occurred) followed by a minimum of 2 days of no rain. The mean <u>number</u> of such wet and dry <u>sequences</u> was tabulated and summed for each district for each year. Table 3:2 gives mean annual sequences for each district over the 13-year period. The overall mean for the sample districts was 18.77 sequences with a high of 23.23 sequences in Collier County, Florida, and a low value of 15.38 sequences in Cape May, New Jersey. Total annual rainfall means are also presented in Table 3:2.

Table 3:2 - Thirteen-Year (1959-1971) Mean Values for Temperature, Rainfall and Mosquitoes for 30 Locations; May 1 through October 31.

Brevard, Fla. Broward, Fla. Charlotte, Fla. Citrus, Fla. Collier, Fla. Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Lee, Fla. Levy, Fla. Manatee, Fla. Manatee, Fla. Monroe, Fla. Monroe, Fla. Palm Beach, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Santa Rosa, Fla. Volusia, Fla.		Total (inches) 34.74 47.44 38.63 39.54 46.89 36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34 32.24	10.72 15.08 10.44 9.16 14.14 11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	Sequence (number) 17.69 20.38 19.00 19.23 23.23 18.38 17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.69 17.54	No./Light trap night 137.15 41.70 32.62 24.58 158.11 12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35 215.28
Broward, Fla. Charlotte, Fla. Citrus, Fla. Collier, Fla. Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Levy, Fla. Manatee, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	79.99 79.92 79.26 79.92 78.13 77.45 77.45 79.23 80.47 79.23 80.47 79.42 78.81 79.56 82.14 77.71	47.44 38.63 39.54 46.89 36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	15.08 10.44 9.16 14.14 11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	20.38 19.00 19.23 23.23 18.38 17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	41.70 32.62 24.58 158.11 12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Broward, Fla. Charlotte, Fla. Citrus, Fla. Collier, Fla. Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Levy, Fla. Manatee, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	79.92 79.26 79.92 78.13 77.45 77.45 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	38.63 39.54 46.89 36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	10.44 9.16 14.14 11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	19.00 19.23 23.23 18.38 17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	32.62 24.58 158.11 12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Citrus, Fla. Collier, Fla. Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Levy, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	79.26 79.92 78.13 77.45 77.75 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	39.54 46.89 36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	9.16 14.14 11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	19.23 23.23 18.38 17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	24.58 158.11 12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Collier, Fla. Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Levy, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	79.92 78.13 77.45 77.75 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	46.89 36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	14.14 11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	23,23 18,38 17,46 16,00 18,15 19,85 20,69 16,85 20,85 20,85 20,69	\$58.11 12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Lee, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	78.13 77.45 77.75 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	36.77 35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	11.96 13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	18.38 17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	12.82 28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Duval, Fla. Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Lee, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	77.45 77.75 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	35.41 37.31 32.52 43.33 42.00 32.39 42.98 40.50 32.34	13.34 16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	17.46 16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	28.13 47.65 52.41 34.75 249.45 12.24 75.55 99.35
Escambia, Fla. Franklin, Fla. Hillsborough, Fla. Indian River, Fla. Levy, Fla. Manatee, Fla. Martin, Fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Volusia, Fla.	77.75 79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	37,31 32,52 43,33 42,00 32,39 42,98 40,50 32,34	16.31 8.14 9.30 11.09 12.17 13.26 9.63 9.35	16.00 18.15 19.85 20.69 16.85 20.85 20.85 20.69	47.65 52.41 34.75 249.45 12.24 75.55 99.35
Hillsborough, Fla. Indian River, Fla. Lee, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	79.33 79.23 80.47 79.42 78.81 79.56 82.14 77.71	32.52 43.33 42.00 32.39 42.98 40.50 32.34	8.14 9.30 11.09 12.17 13.26 9.63 9.35	18.15 19.85 20.69 16.85 20.85 20.85 20.69	52.41 34.75 249.45 12.24 75.55 99.35
Hillsborough,Fla. Indian River,Fla. Lee, Fla. Manatee, Fla. Martin, Fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Volusia, Fla.	79.23 80.47 79.42 78.81 79.56 82.14 77.71	43.33 42.00 32.39 42.98 40.50 32.34	9.30 11.09 12.17 13.26 9.63 9.35	19.85 20.69 16.85 20.85 20.69	34.75 249.45 12.24 75.55 99.35
Lee, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Volusia, Fla.	80.47 79.42 78.81 79.56 82.14 77.71	42.00 32.39 42.98 40.50 32.34	11.09 12.17 13.26 9.63 9.35	20.69 16.85 20.85 20.69	249.45 12.24 75.55 99.35
Lee, Fla. Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Volusia, Fla.	80.47 79.42 78.81 79.56 82.14 77.71	32.39 42.98 40.50 32.34	12.17 13.26 9.63 9.35	16.85 20.85 20.69	12.24 75.55 99.35
Levy, Fla. Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	78.81 79.56 82.14 77.71	42.98 40.50 32.34	13.26 9.63 9.35	20.85 20.69	75.55 99.35
Manatee, Fla. Martin, fla. Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Volusia, Fla.	79.56 82.14 77.71	40.50 32.34	9.63 9.35	20.69	99.35
Monroe, Fla. Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	82.14 77.71	32.34	9.35		
Nassau, Fla. Palm Beach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	77.71			17.54	215.28
Palm Béach, Fla. Pinellas, Fla. St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.		32.24			
Pinellas, Éla. St. Johns, Fla. St. Lucie, fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	78 07		10.06	19.00	13.75
St. Johns, Fla. St. Lucie, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	10.07	44.10	11.41	22.23	52.78
St. Lucie, Fla. Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	79.12	35.11	11.08	19.00	17.17
Santa Rosa, Fla. Sarasota, Fla. Volusia, Fla.	77.28	35.59	9.01	19.23	25.43
Sarasota, Fla. Volusia, Fla.	78.79	39.44	9.98	20.69	100.23
Sarasota, Fla. Volusia, Fla.	76.36	35.03	10.78	19.31	10.55
	79.32	39.87	12.52	19.23	64.61
	78.28	34.59	8.69	17.69	30.15
waiton, ria.	76.11	35-97	10.59	18.77	168.86
Chatham, Ga.	76.21	19.67	11.22	20.23	25.55
Va.Beach, Va.	72.65	22.31	8.51	17.38	12.37
Delaware	69.25	23.17	5.92	15.46	10.85
Cape May, N. J.	68.42	21.93	4.82	15.38	103.32
Monmouth, N. J.	66.92	34.75	5.84	16.85	10.79
Ocean, N. J.	66.48	24.98	5.77	16.54	27.88
Avg. 30 Locations		35.38	10.34	18.77	63.20

TEMPORARY CONTROL

Temporary abatement procedures involved the use of chemicals against the adult or larval stages of the mosquitoes. These chemicals were applied by aircraft, boat, and truck-mounted equipment. The data used in our analysis was the total number of acres treated each year by all methods and for all purposes in each district. No distinction was made between adulticiding and larviciding nor between the method of application. These data were once-over acreages treated. For example, 1 acre receiving chemical application on 10 different days would be counted as 10 acres treated. The data were obtained directly from the abatement districts and in some cases from the state agencies in each state. Where information on the acreages treated was not available, standard dosages were used to convert the chemical quantities to acreages. Nean acreage chemically treated for the 30 districts is shown in Figure 3:2.

PERMANENT CONTROL

The major portion of permanent abatement activity consisted of ditching operations. Ditches were constructed either to bring additional acres of salt marsh under control or to maintain the ditching system that had been installed in previous years. The data collected were in terms of the linear feet of ditch constructed and the acres of marsh in impoundments. The permanent control variable desired was one that measured the accumulated acres of salt marsh breeding area under control in each year of the 13-year time period - the "stock" of permanent work. This required a conversion factor for linear feet to acres and a depreciation factor to be applied to the existing ditching system. The linear feet per acre conversion factor used was 261 feet. This figure was selected because the Delaware ditching system had 261 feet per acre and information supplied by other district directors indicated that 250 to 270 feet was as close an approximation as could be obtained.

The depreciation factor applied was 12 years to Brevard, Broward, Charlotte, Citrus, Collier, Hillsborough, Indian River, Lee, Levy, Manatee, Martin, Monroe, Palm Beach, Pinellas, St. Johns, St. Lucie, Sarasota, and Volusia counties in Florida and Chatham County, Georgia; 8 years to life was determined from information supplied via a survey of selected district directors. it should be pointed out that the 12-, 8-, and 5-year lives are averages of the groups: and individual district's ditches may have a

averages of the groups; and individual district's ditches may have a slightly shorter or longer life than the average. For instance, the range around the 12-year life might be 8 to 16 years.

Duval, Escambia, Franklin, Nassau, and Walton countles in Florida; and

5 years to Delaware (State), Cape May, Monmouth, Ocean counties in New Jersey, and Virginia Beach County, Virginia. This expected length of

The permanent control stock $(X_{j_{i}})$ was computed by adding the acres ditched (D_{t}) and impounded (I_{t}) in a given year (t) to the depreciated total acres ditched from the previous years $\begin{pmatrix} D_{t-1} \\ r \end{pmatrix}$ plus the acres of impoundment in previous years (I_{t-1}) :

$$s_t = D_t + I_t + D_{t-1}/r + I_{t-1} = D_t + I_t + \frac{n-1}{n} (X_{i_{t+1}})$$

where r = straight-line depreciation factor for a life of n years of n-1/n, n-2/n ... 1/n, n = 12, 8 or 5 years according to the area. For example, the stock at the end of 1960 for the area having a 12-year ditch life would be the acres ditched and impounded during 1960 + 11/32 of the stock of control at the end of 1959. Although there may be occasional repair of a dike of an impoundment or other maintenance, these were overall very minor expenditures and, therefore, impoundments were considered not to depreciate.

The resulting permanent control stock variable indicates the number of acres under permanent control in each of the years. The mean number of acres under such control for the 30 districts (by years) is presented in Figure 3:3. It is apparent that substantial increases were made in the permanent installations over the 13-year period. The rate of increase was slower in the latter years, but it must be remembered that a larger and larger portion of the activity was devoted to maintenance as the acreage increased.

It is interesting, but probably misleading, to examine how the trend in numbers of mosquitoes corresponds with acres treated chemically and acres under permanent control in Figures 3:2 and 3:3. Permanent control has a pronounced upward trend, while mean number of mosquitoes has

16

a downward trend. The acres sprayed tends to move in the same direction as the number of mosquitoes. It is tempting to conclude that most reduction in mosquito numbers is associated with permanent activities; however, this is not warranted until the effect of spraying has been accounted for in the model in Section IV.

EXPENDITURES

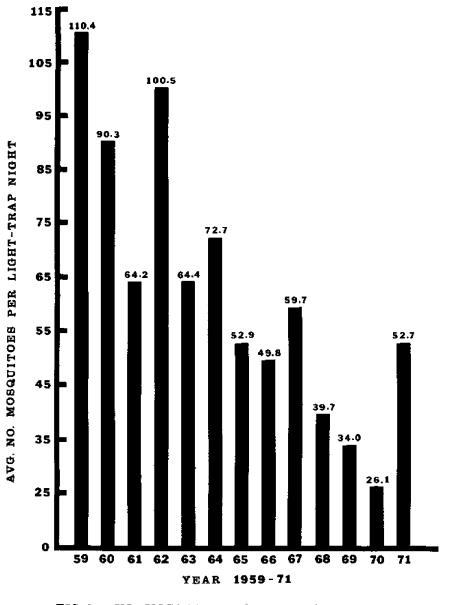
Information was assembled on the amount the 30 abatement districts spent on mosquito abatement during the 1959-1971 time period. The total expenditures were financed from local district taxes and from state taxes. Table 3:3 shows these mean expenditure values for the 30 districts on a total basis and on a per capita basis. This information is also presented graphically in Figures 3:4 and 3:5. (individual district data are given in Appendix Table 2). Upon inspection of Table 3:3 and Figures 3:4 and 3:5, one observes several significant trends. First, the total amount spent by the 30 districts increased very substantially from the beginning of the period to the end of the period. These expenditure data were converted to constant dollars (1967) by the wholesale price index so it is possible to make direct purchasing power comparisons between different years.

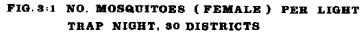
Total expenditure for 1971 (\$8.3 million) was 89% greater than total expenditure for 1959 (\$4.4 million). There were 2 distinct subperiods within the 13-year period. The rate of increase in expenditure was much higher for 1968 to 1971 than for 1959 to 1968. The annual rate of increase for the 1968-1971 period was 9% while the annual rate was only 5.4% for the 1959-1968 period. The second trend was an increasing portion of total expenditures was coming from local funds. Expenditures from state funds were almost constant through the 13-year time period (see Figure 3:4).

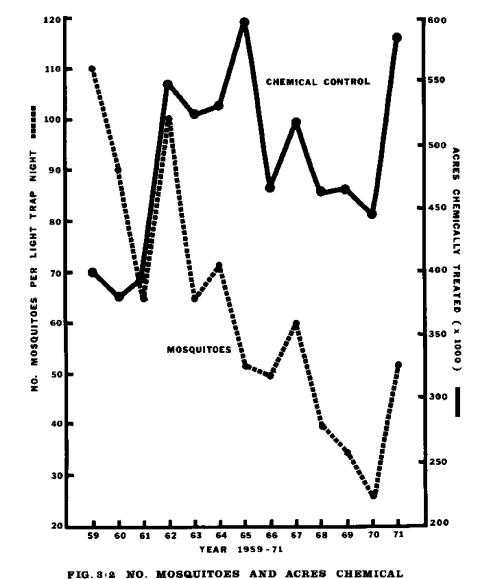
Figure 3:5 displays the state, local and total expenditures on a per capita basis. Total and local expenditures per capita generally increased throughout the period, whereas the state expenditure per capita declined. Comparison of 3-year averages for 1959-1971 to 1969-1971 showed local per capita expenditure increased 45.8%, state per capita expenditure decreased by 26.6%, and total per capita expenditure

increased by 21.4%.

There are a number of demographic and economic factors that were expected to affect expenditures for mosquito abatement. Many of these were available from secondary sources, recorded as county data. Among the economic factors thought to be of importance to local mosquito abatement expenditures are per capita annual income, tourism, wage rates of mosquito abatement workers, and state grants for mosquito abatement. All of these variables were measured in dollars which were deflated by the wholesale price index. Tourism was measured in terms of numbers of employees in lodging establishments per district.

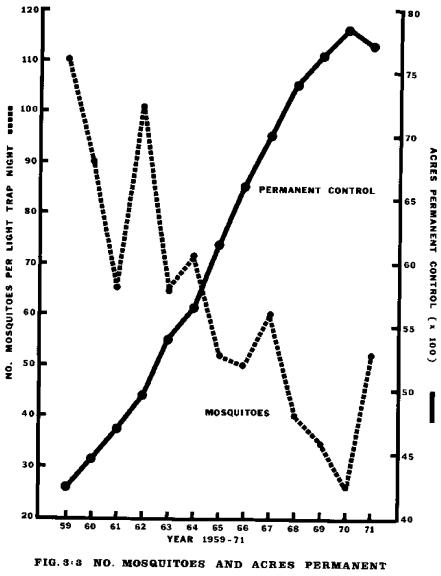

In addition, resident population was recorded to account for the number of people among which local mosquito expenditures are shared. Each of these variables for each district and year is tabulated in Appendix Table 2. The exact specification of the relationship of the economic variables and expenditures for mosquito abatement is specified in the next section along with a model mosquito abatement equation.

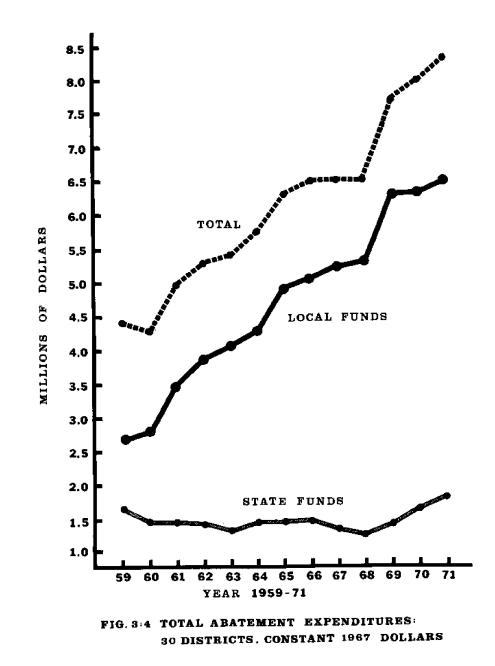

Table 3:3 - Abatement Expenditures^a: Mean Annual and Per Capita Mean Annual, 30 Districts, 1959-1971.

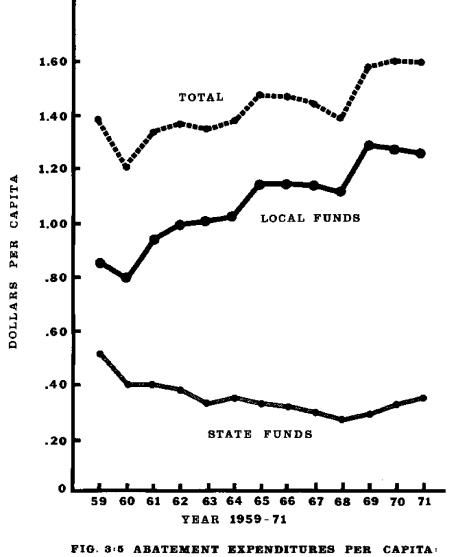

Source:	Unpublished	records	of	Abatement	Districts.
---------	-------------	---------	----	-----------	------------

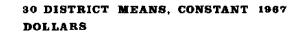
	Mean An	Mean Annual Per Capita Expenditure				
Year	Local	State	Total	Local	State	Total
1959	2,743,006	1,650,021	4,393,027	. 8622	.5186	1.3808
1960	2,859,462	1,451,534	4,310,995	. 8039	. 4081	1.2119
1961	3,492,285	1.476.582	4,968,869	.9430	. 3987	1.3417
1962	3,860,526	1,459,304	5,319,830	.9974	. 3770	1.3745
1963	4,066,271	1,336,835	5,403,106	1.0148	. 3336	1.3484
1964	4,304,230	1,450,575	5,754,805	1.033	. 3483	1.3816
1965	4.942.513	1,417,703	6.360.216	1.1462	. 3288	1.4750
1966	5.099.732	1.441.354	6.541.086	1.1447	. 3235	1.4682
1967	5.236.156	1,354,325	6,590,481	1.1434	. 2957	1.4391
1968	5.273.247	1.271.751	6.544.998	1.1114	.2680	1.379 ¹
1969	6.331.774	1,438,916	7.770.690	1.2904	.2932	1.5836
1970	6.339.659	1.665.295	8.004.954	1,2683	. 3332	1.601
1971	6.506.051	1,810,048	8,316,099	1.2454	. 3465	1.591

^aAll expenditures deflated by the wholesale price index, 1967 = 100.






CONTROL



IV. AN ECONOMIC MODEL OF MOSQUITO ABATEMENT

The previous 2 sections outlined several biological and economic dimensions of the mosquito abatement process. This section will attempt to specify how these dimensions are related. For ease of manipulation and measurement, the description of the mosquito biology, abatement activities, and economic behavior must be an abstraction or model. It is hoped that parameter estimates from the model can "explain" mosquito density and local per capita abatement expenditures.

Other economic models of pest management are available. Headley (1972) gave an interpretation of "economic threshold" as the pest density at which the incremental pest damage prevented (by the use of controls) is equal to the incremental control costs. Hall and Norgaard (1973) have clarified the concept of economic threshold in terms of optimal treatment level or optimal post-treatment pest density. Carlson (1970) has described a model in which both mean level and variability of infestation are included. Lee and Langham (1973) describe citrus orchard pest management in which the degree of fruit yield affects pest populations, and pest population affects citrus yields. In each case, the objective is to find the profit maximizing degree of control.

In contrast, public mosquito abatement has no crop to protect or easily identifiable profit to maximize. The analogous concept to "economic threshold" is some post-treatment, mosquito density level at which the incremental decrease in annoyance (in dollar units) is equal to the incremental increase in control costs. This "annoyance threshold" is shown at pest density \aleph^{\pm} in Figure 4:1 which hypothetically may be equivalent to X percent abatement (reading from right to left). Higher levels of abatement would involve higher increases in costs than gains in annoyance reduction would justify.

MOSQUITO ABUNDANCE

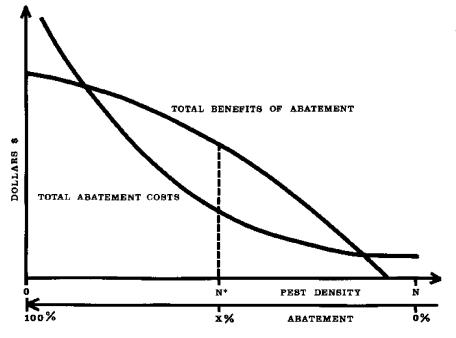


FIG.4:1 ANNOYANCE THRESHOLD FOR MOSQUITO ABATEMENT

The abatement part of the model must include pest population growth since light trap collections reflect both control efforts (induced mortality) and the production of additional mosquitoes. The first component of the model, presented in the next subsection, will be an abatement equation describing average annual mosquito density for a control district.

The quantification of the demand for mosquito reduction will be assumed to be expressed by the expenditure of money for mosquito control. This measure is chosen rather than the number of complaints, changes in land values, or dollar value of sickness which are mosquito related. More information is available on mosquito control expenditures than on the other measures, and expenditures are commonly used in analysis of demand for public services (Borcherding and Deacon, 1972). A simultaneous equation model representing the production of abatement and abatement demand is developed in the section to follow. The model consists of 4 equations; mosquito abundance, temporary control, permanent control and demand for abatement. The number of mosquitoes present in coastal abatement districts depends upon many environmental as well as control elements. For this study, average temperature, total storm rainfall, sequence rainfall (number of wetting and drying periods), and acres of breeding area were assumed to explain differences in mosquitoes produced. Each factor was expected to have a positive effect. Natural factors unique to particular districts such as marsh slopes, vegetation and tide levels might also be included. For simplicity, these are accounted for by allowing an intercept shift for each district by means of a district dummy variable.

Storm rainfall, temperature, and district effects are assumed to affect potential populations in a separable, additive manner. However, rainfall sequence and the proportion of breeding area not under permanent control are expected to be interrelated (LaSalle and Knight, 1973). Therefore, we examined the effect of the product of rainfall sequence and uncontrolled proportion of breeding acres on mosquito populations.

The control inputs which are expected to decrease mosquito numbers are acres treated chemically and the permanent control stock (S_t) as described in Section III. Thus, the abundance of mosquitoes as a result of the mosquito abatement process can be written as:

$$(4-1) Y_1 = f(X_1, X_2, X_3, X_4, Y_2, D_1),$$

where Y_1 = number mosquitoes per light trap night, X_1 = amount of storm rain, X_2 = sequences of wet and dry periods times proportion of breeding area not under permanent control, X_3 = mean mosquito season temperature, X_4 = stock of permanent acres under control, Y_2 = acres chemically treated and D_1 = district effect variable with i = 1, 2...29.

Each of the variables in a given year, except acres treated chemically, can logically be designated as predetermined by factors other than the numbers of mosquitoes that year. However, we might expect the number of mosquitoes to effect the amount of chemical treatment, as well as vice versa.

TEMPORARY CONTROL

If district managers use light trap counts, number of complaints, or other pest density indicators to decide on chemical treatment, then we might expect acres treated to be higher in severe mosquito seasons and low when few mosquitoes are observed. The size of the district budget will also have a positive effect on acres sprayed. One important factor which might tend to reduce acres treated with insecticides is the dispersion of the human population to be protected. The higher the population density, the fewer acres which need to be chemically treated for a given level of protection.

An expression of the factors influencing acres chemically treated in a district in any year might be:

(4-2) $Y_2 = g(X_5, X_6, Y_1)$

where X_5 = budget of the abatement district, X_6 = district population density (people per square mile), and $Y_1 = mosquitoes$ per light trap night.

There are other factors that effect acres chemically treated, but the above are thought to be most important in describing management decisions on the use of chemicals. In recent years, or in other areas, the degree of insecticide resistance and use or nonuse of ultra-low volume application methods may be of importance.

PERMANENT CONTROL

Acres of permanent control in any year affect permanent control stocks which in turn are hypothesized to affect mosquito numbers. At given prices of permanent abatement work per acre (P_{γ}) and chemical treatment per acre (P_{γ}) and a given abatement budget (X_5) we can expect the acres of permanent work (Y_3) to be determined by:

(4-3)
$$Y_3 \cdot P_{Y_3} = X_5 - (Y_2 \cdot P_{Y_2})$$

That is, permanent abatement work is somewhat of a residual claimant on the budget as expenditures for chemical treatment vary with mosquito populations.

The factors affecting permanent control decisions are assumed to be described as:

$$Y_3 = h (X_4, Y_2)$$

(4 - 4)

Acres chemically treated (Y_2) is hypothesized to have a negative effect on acres of permanent work (Y_3) , while stock of permanent acres under control (X_4) is expected to exert a positive effect.

ABATEMENT DEMAND

Decisions on the budgetary levels for many public services are difficult to analyze because both prices and quantities are difficult to specify. The model used in this study is a variation of one by Borcherding and Deacon (1972). This model assumes that all districts use majority rule voting, that capital inputs (including pesticides) are freely mobile, and that capital is available at a constant rental rate. This implies that the cost necessary to produce one more unit of abatement (marginal cost) depends on the wage rate of labor, adjusted by labor's share of total expenditure on abatement (W^B). W^B is used rather than W because it is a derived relationship from the Cobb-Douglas production function - the marginal cost of abatement is W^B (see DeBord 1974).

Quantity of abatement is the number of mosquitoes killed. It is difficult to know what number of mosquitoes would be present in the absence of controls. Local control expenditures per capita (Y_{ij}) is assumed to be a logical proxy variable for the quantity of abatement per capita. This can be seen by referring to equation (4-3). Total local expenditures $(N \cdot Y_{ij}) \approx$ total budget (X_{5}) less total state grants $(N \cdot X_8)$, where N = 'population. Price of work units (P_{Y_2}, P_{Y_3}) are

assumed to be dependent only on wage rates (W^B) , but the effect of scale economies on prices (costs) of permanent work and spraying will be examined in the next subsection.

If expenditure per capita measures quantity of mosquito abatement received per person, and price of abatement is proportional to $\{w^B\}$, then the classical demand curve is a negatively sloped relationship like that shown as Z in Figure 4:2 (all other variables held constant).

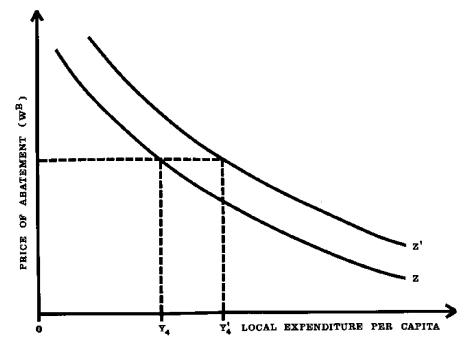


FIG. 4:2 MOSQUITO ABATEMENT DEMAND RELATIONSHIP

Many variables are expected to affect expenditures per capita other than price. If this public service is a normal good (a product for which expenditures rise as income rises) increases in per capita income (X_7) will shift the curve upward (Z to Z'). Likewise, increasing tourism (X_9) will increase the demand for mosquito protection. (The causation may also be reversed, but this complication will be ignored here). State grants (X_8) will also increase willingness to expend local funds if matching regulations are in effect on most types of expenditures. There is also the possibility that districts might substitute state funds for local funds. Evidence on each of these effects awaits estimation of the demand relationship in the next section.

The final factor affecting expenditures of abatement dollars is the number of mosquitoes. As indicated above, temporary expenditures and hence total expenditures in any one year may change when mosquito numbers (Y_1) change from normal. This is indicated in Figure 4:2 by the upward shift from Z to Z' and the resulting increase in expenditures from Y_1 to Y_2^i at a given price of abatement.

The demand equation which includes each of the above factors is:

(4-5)
$$Y_4 = j (x_7, x_8, x_9, w^B, N, Y_1)$$

SIMULTANEOUS EQUATION MODEL

Based on the above explanations, the complete model used to represent the demand for and production of abatement involve the following four equations:

(4-1)	$Y_1 = f(x_1, x_2, x_3, x_4, Y_2, D_i)$	(Mosquito Abundance)
(4-2)	Y ₂ = g (X ₅ , X ₆ , Y ₁)	(Temporary Control)
(4-4)	$Y_3 = h (X_4, Y_2)$	(Permanent Control)
(4-5)	$Y_4 = j (x_7, x_8, x_9, w^B, N, Y_1)$	(Abatement Demand)

This is a simultaneous model because each equation has one of the other dependent variables as an independent or explanatory variable (Kmenta 1971). The quantity of abatement demanded is a function of

price, income, state grants per capita, tourism, population and the number of mosquitoes. All of these variables, except mosquito numbers, are assumed to be exogenous. The number of mosquitoes in a coastal community is determined by a set of natural and control factors. All of these factors are predetermined except the acreage treated chemically. The acreage treated chemically depends on the budget, population density and the number of mosquitoes.

The quantity of control demanded depends on the number of mosquitoes; the number of mosquitoes depends on the acres chemically treated; and the acres treated chemically depend on the number of mosquitoes. The estimation of the parameters for these relationships, therefore, requires the specification of a simultaneous equation model, since each of the dependent variables was hypothesized to have endogenous variables as explanatory variables. Equations (4-1) - (4-5) were estimated by converting all variables to logarithms and applying multiple regression techniques (see Section V).

ECONOMIES OF SCALE

Do large districts have advantages in cost per acre of permanent work and costs per acre treated chemically? Economic theory indicates that economies may arise from specialization and division of labor to make workers more efficient or when large-scale purchasing of inputs (quantity discounts) is possible (Ferguson and Maurice 1970).

To test for this existence of changes in cost of using chemical controls with district size, the following model will be estimated:

(4-6) $P_{Y_2} = k (Y_2, X_6, W^B, N)$

If there are economies of scale, then cost per acre chemically treated (P_{Y_2}) will decrease as the number of treated acres (Y_2) increases. Other factors increasing spraying costs will be wage rates (W^B) and population of the district (N). The wage rate is the cost of labor and as it increases so will the cost per unit of work completed. The latter factor (population) reflects travel and congestion time costs. More travel and congestion will cause costs per unit of work to increase. Another factor which may reduce spraying costs is human population $\underline{density}(X_6)$, because with greater population density, there would be a tendency to undertake more adulticiding (treating residential areas) relative to larviciding (treating breeding areas). Adulticiding is less expensive per acre than larviciding.

Cost per acre of permanent control may also be affected by the scale of district operations. The following model of permanent control costs is proposed for testing:

$$(4-7) \qquad P_{Y_3} = m(Y_3, W^B, N)$$

The justification for inclusion of wage rates adjusted for share of expenditures to wages (W^B) and population (N) is the same as that for chemical treatment costs, i.e. higher labor costs and congestion. Scale economies will be indicated by costs significantly decreasing in years or districts where more acres are ditched.

TEMPORARY CONTROL COMPARED TO PERMANENT CONTROL

In equilibrium, we expect a cost minimizing district to adjust the temporary (Y_2) and permanent (Y_3) abatement activities until the marginal productivity (additional mosquitoes eliminated) per dollar spent on each activity is equal. This can be expressed in the following equation:

$$\frac{(4-8)}{\frac{P_{Y_2}}{P_{Y_2}}} = \frac{\frac{MPP_{Y_3}}{P_{Y_3}}}{\frac{P_{Y_3}}{P_{Y_3}}}$$

where MPP_y and MPP_y = marginal adjustments in mosquito numbers from 2^{3} temporary and permanent control activities in the mosquito abatement equation (4-1).

 P_{γ} and P_{γ} = the average prices or costs per unit of temporary and permanent control from equations (4-6) and (4-7).

In reality, this is difficult to accomplish. First, the timing of the reductions in mosquito numbers relative to the date of work completion is different. That is, for comparison to present comfort rendered, the benefits of future mosquito control from an acre ditched must be discounted to the present $^{l}\colon$

(4-9)
$$\frac{MMP_{\gamma_2}}{P_{\gamma_2}} = \sum_{t=0}^{n-1} MMP_{\gamma_3} \left(\frac{n-t}{n}\right) / (1+r)^t / P_{\gamma_3}$$

where n = 10, t = 0, 1,....9, $\left(\frac{n-t}{n}\right)$ = depreciation schedule, and $(1 + r)^{t}$ = discount formula. Also, it is difficult to assess whether permanent or temporary control is providing control since they occur simultaneously.

Furthermore, state grants may favor permanent rather than temporary control given the matching rules. Thus, we might expect managers to favor permanent rather than temporary control. Analysis of this question will follow the estimation of the general model and the economies of scale models.

V. REGRESSION ANALYSIS

All of the equations in the simultaneous equation model were estimated using the logarithmic transformation of the district data. This model permitted interaction between the number of mosquitoes (Y_1) , the number of acres treated chemically (Y_2) , the number of acres ditched for permanent control (Y_3) and per capita local expenditure (Y_4) . The data base used were the observations from the 30 districts over the l3-year period, 1959-1971. A two-stage least-squares multiple regression procedure was used for estimation and, since serial correlation was present in equation Y_4 , a first order autoregressive error model was estimated (Kmenta, 1971).

The results are presented in Table 5:1. These results are in the logarithmic form and the coefficients presented in Table 5:1 are interpreted as percentages. For example, if an independent variable has a corresponding coefficient under a particular dependent variable of -0.1, then this means that for every 1% change in the independent variable, the dependent variable will change in the opposite direction by 0.1 of 1% (or a 10% change in the independent variable). If the sign is positive, then the change with the dependent variable will be in the same direction as the change in the independent variable. The coefficients which are statistically significant are indicated on the table.

¹There is a direct link between Y_3 and the stock of permanent control (X_{i_j}) . Increases in X_{i_j} take place when increases in Y_3 (ditching) are greater than the maintenance. A high percentage of permanent work is ditching and the terms ditching and permanent work are used interchangeably in the analysis.

	Dependent Variables				
Independent Variables ^b	Number Mosquitoes (Y _l)	Acres Chemical Control (Y ₂)	Acres Permanent Control (Y ₃)	Local Expenditure (Yy)	
Intercept	13.665 (1.25)	2.979*** (6.01)	2.133** (2.20)	-7.190*** (4 ₋ 52)	
No. Mosquitoes (Y ₁)		0.155*** (4.27)		0.121 (0.87)	
Acres Chemical Control (Y ₂)	-0.570*** (3.59)		-0.244*** (2.71)		
Storm Rain (X ₁)	0.033 (0.694)				
Sequence Rain (X ₂)	0.107*** (3.95)				
Temperature (X ₃)	-0.895 (0.359)				
Stock Permanent Control (X $_{4}$)	-0.097** (2.10)		0.791*** (25.28)		
Budget (X ₅)		0.788*** (17.67)			
Population Density (X ₆)		080*** (3.19)			
Income (X ₇)				1.569* (1.86)	
State Grants (X ₈)				0.348** (2.08)	
Tourism (X ₉)				0.332** (2.22)	
Wage Rate (X ^B)				1.695* (1.43)	
Population (N)				-0.343** (2.02)	

Table 5:1	-	Mosquito Abatement and Abatement Demand Regression Estimates;
		Simultaneous Equations 1959-1971 ^a ; Sample Size (n) = 390.

^at ratios are given in parenthesis; the levels of significance are denoted by .01 = ***, .05 = **, .1 * * for a one-tailed test. Regression estimates and t ratios are from a first order autoregressive error model. t ratios were reduced approximately 3.5 fold from the original two-stage least-squares estimates.

^bDummy variables (D_.) were significantly different from the base district in 24 of the 29 districts; available in DeBord, 1974. Equation (4-1), explained 70% of the variation in the number of mosquitoes and it was a statistically significant regression. All of the estimated coefficients of the explanatory variables carried the expected signs, except for the temperature variable. The empirical analysis indicated that the only natural factor significantly affecting the number of mosquitoes was the sequencing of rainfall. Storm rainfall had the expected sign but was not statistically significant.

The effect of "sequence rain" is shown by the significantly positive coefficient of X_2 . Holding all of the other independent variables constant, an increase in the number of occurrences of 1/4 inch rain followed by at least 2 days without rain, causes an increase in the number of mosquitoes. Specifically, the estimated coefficient indicates that a 10% increase in the number of sequences leads to a 1% increase in the number of mosquitoes. The mean number of mosquitoes was 63.2 and the mean number of sequences was 18.77 for the 30 locations over the 1959-1971 period. A 10% increase in the number of sequences from the mean represents 1.88 more occurrences, and the resulting increase in mosquito numbers would be 0.632

The amount of "storm rain" did not exert a statistically significant effect on the mean number of mosquitoes, however, the direction of the effect was positive, as expected. These unexpected results may be due to the time period chosen for the data. The number of times hurricanes and tropical storms occur during a year are very low. The mean number of inches of storm rainfall (May 1-October 31) for the data set was 10.34 inches. It could be that districts increase the intensity of their chemical control operations after these periods and manage to keep the number of mosquitoes down. The information analyzed was on an annual basis and the timing of operations was unknown. The facts that these storms are infrequent and the data compiled was on an annual basis may lead one to conclude that this effect is lost. Data compiled on a shorter time period may indeed show it to be of significant importance.

The temperature variable was not significant and had a negative sign. The overall grouping of districts in the analysis and the use of data for only the warmer months undoubtedly obscured any positive effects of the temperature.

The factors lowering the abundance of mosquitoes were the number of acres treated chemically and the permanent control stock. These were statistically significant and the coefficients were of the expected negative sign. This means that both temporary and permanent control procedures have been effective in reducing the average mosquito density over the 13-year time period. In particular, the results of the regression indicate that a 10% increase in the acres treated with chemicals (Y_2) within a district decreases the number of mosquitoes by 5.70%, all other factors remaining constant. The mean number of acres treated chemically was 484,680 and the mean number of mosquitoes was 63.2. A 10% increase in chemical treatment represents an additional 48,468 acres and the associated reduction in the mean number of mosquitoes per light trap night would be 3.60.

The number of acres controlled by permanent abatement significantly affected the number of mosquitoes occurring in coastal environments. The negative sign of the coefficients indicates that as larger and larger acreages of salt marsh are either ditched or diked, the number of mosquitoes decreases. Specifically, a 10% increase in the stock of permanent control (X_{ij}) leads to a 0.97% decrease in the number of mosquitoes. This 10.3 to 1 ratio of permanent control to mosquit reduction does not appear to be very effective at first glance. However, permanent control procedures last for several years depending on the area. The amount of permanent control in a year reduces the number of mosquitoes in that year and in succeeding years. This is different from spraying because chemical application is only effective for several days.

The mean number of mosquitoes per light trap night for the 13-year period was 63.2 and the mean number of acres under permanent control per district was 6,138. A 10% increase in the acres under control represents an additional 613.8 acres, and the associated decline in mean number of mosquitoes per light trap night would be 0.613 mosquitoes (63.2 x 0.97%). This reduction also occurs in succeeding years or at least a portion of the reduction occurs. Considering a 10-year life and a straight line depreciation schedule, the permanent work is 100% effective the first year, 90% effective in the second year, 80% effective in the third year, and so forth, until it becomes ineffective at the end of the tenth year. Considering an average 10-year life, the number of mosquitoes eliminated in the 10-year period, as a result of a 10% increase in ditching, was 3.37. This result is obtained by summing the depreciated reductions over the 10-year period, i.e. 3.37 = 1.0 (0.613) + 0.9 (0.613) + 0.8 $(0.613) + \ldots + 0.1 (0.613).$

TEMPORARY CONTROL

The estimated equation indicated that the number of mosquitoes present exerted a positive influence on the number of acres sprayed. This was the expected relationship because the existence of the monitoring system suggests increased spraying when buildups occur and decreased spraying when the mosquito populations are at a low level. The estimated coefficient indicates that for every 10% increase in the number of mosquitoes, an increase of 1.55% occurs in the number of acres sprayed. The mean number of mosquitoes was 63.2 and the mean acres sprayed was 484,680. A 10% increase in mosquitoes represents 6.32 mosquitoes, and the associated increase in the acres sprayed is 7,513 acres.

The relationship between acres sprayed and the real budget of the abatement district, the population density and the number of acres treated in the previous year can be interpreted in a similar fashion.

PERMANENT CONTROL

The number of acres of permanent control work performed in a given year was hypothesized to be a function of the number of acres treated chemically and the stock of permanent control. The number of permanent control acres in a year was negatively related to the number of acres treated chemically. This was expected because these abatement procedures compete with each other for the same budget dollars. Increased amounts of work done on one necessarily means that less resources are left for the other type abatement. Permanent control work is more long-term in nature than chemical usage and plans are made and money is budgeted for the entire year's work. This amount of work is completed and the money is spent unless an abnormally bad mosquito year requires the personnel to perform more temporary work. During periods of heavy infestation, permanent work may stop and equipment sit idle until the mosquito situation is brought under control. Money and labor resources may be shifted from permanent work to temporary work, and this is a second reason for expecting the negative relationship. The estimated coefficient indicated that a 10% increase in the acres treated chemically caused a 2.24% decrease in the acres of permanent work.

The amount of permanent work completed in a given year was expected to be positively related to the stock of permanent control. The stock of permanent control is an accumulation of many years of work. The expected ditch life for the 30 districts averages 9.7 years and ditches must be maintained this often on the average¹. The larger the stock the greater the amount of work necessary just to keep the existing stock in good operating condition. In order to increase the stock, an amount of ditching greater than the maintenance is required. The estimated coefficient showed the stock was the main determinant of the amount of ditching completed within a given year. The coefficient indicated that with a 10% increase in the amount of stock, all other things being held constant, the number of acres ditched increased by 7.91%.

ABATEMENT DEMAND

The estimation procedure showed that local per capita expenditures were significantly affected by income, state grants, tourism, wage rates and population, but not by the number of mosquitoes. All of the estimated coefficients were of the expected signs.

Income was statistically significant and the estimated coefficient was + 1.569 which was elastic. This coefficient means that local per capita expenditure will increase by 15.7% when per capita income increases by 10%, all other things held constant. Income, then, is an important factor in explaining why some districts spend more on abatement than is spent by other districts.

State grants per capita were positively and significantly related to the willingness of citizens to pay for abatement activities. The estimated coefficient was + 0.348 which indicates that for every 10% increase in per capita state grants, the local per capita expenditures increased by about 3.5%. The mean value of state per capita grants was \$0.426 and the mean local per capita expenditure was \$1.10. Thus, a dollar increase in state government grants is followed by a \$.90 increase in local expenditures at the mean level of expenditures, given other factors constant. The total expenditure is the sum of local and state; therefore, a \$1.00 increase in state money causes a total increase of per capita expenditure of \$1.90. This indicates that state aid to local districts stimulates local expenditure rather than substituting for it. Increased state contributions cause the local districts to spend more local funds, all other things being equal. This is an important finding because states may encourage expenditures on mosquito abatement by increasing their contribution or they can curtail such activity by reducing their grants.

The state grants in all states except New Jersey and Delaware, were on a matching basis. This reflects the decision that it was felt that more mosquito abatement was socially desirable than would be provided in the absence of state grants. The reasoning relates to the distribution of benefits from abatement activities. State aid implies that individuals residing outside the abatement district receive benefits from abatement and accordingly should share in the cost, or the state agency feels it socially desirable to have a higher level of mosquito control. For one of these reasons, the state makes grants from the general revenue, thereby spreading the cost over all that contribute to the general revenue.

The tourism variable was measured as the number of employees in all lodging establishments within the abatement district. The more dependent upon the tourist and recreation industry a district was, the greater the public demand for abatement and the more willing the citizens would be to spend. This expectation was realized in the estimated empirical coefficient as it was + 0.332 and was significant at the 0.05 ievel.

The wage rate was employed as a price variable. It was expected to have a negative relationship with the expenditure level and the estimated

¹This represents a weighted average of the expected ditch life in each district. There were 19 districts with 12-year lives, 5 districts with 8-year lives, and 6 districts with 5-year lives.

results supported this expectation. The coefficient was -1.695 and it was significant. The fact that this coefficient is less than -1.0 means the demand for abatement is elastic - a 1% increase in the price (wage) results in a 1.69% decline in local per capita expenditure (proxy for the quantity of abatement).

Population size and local expenditure per capita were expected to be negatively related. This was because a larger population enabled a district to lower the expenditure per capita and still maintain the same size budget, since the expenditures could be shared among a larger number of people. The estimated coefficient was -0.343 which means that a lo% increase in the population caused the local per capita expenditure to decline 3.43%. This coefficient was statistically significant at the 0.05 level. The number of mosquitoes present in the abatement district exerted a statistically insignificant influence on the local per capita expenditure. Mosquito density variations influenced the number of acres treated with chemicals but not the total local expenditures per capita.

SINGLE EQUATION MODEL

To compare the effects of allowing for and ignoring simultaneity and to deal with the statistical problems of no independent expenditure decisions between years for a given district, the 4 equations (4-1), (4-2), (4-4), and (4-5) were estimated <u>individually</u> by the least-squares procedure. The results of this single equation analysis of the data from 30 districts over 13-years (390 observations) are presented in Appendix Table 8.

The single equation model and simultaneous equations model (previously presented in Table 5:1) produced very similar results in terms of total explanatory power and the correct expected signs of the coefficients. The major difference was in the magnitude of the coefficients on the temporary and permanent control variables. In the simultaneous equation model, the temporary control coefficient was 5.88 times as large as the permanent control coefficient in the mosquito abundance equation. The single equation estimation showed the reverse situation as the permanent control coefficient was 4 times the magnitude of the temporary control coefficient. In fact, the temporary control coefficient was not statistically significant, and the permanent control efficient was highly significant. The simultaneous equation model showed both variables as significant determinants of the mean number of mosquitoes.

This comparison illustrates the danger of using an inappropriate pest management model. The economic model gave theoretical reasons to reject the single equation model in that Y_2 affects Y_1 , and Y_1 affects Y_2 . The statistical results of the simultaneous model support this interdependent formulation of the abatement process. Therefore, the simultaneous procedure is the appropriate one to use in evaluating public mosquito abatement.

ECONOMIES OF SCALE

The average cost of performing permanent abatement work (P_{Y_3}) was hypothesized to be a function of the population (N), the wage rate (W^B) , and the quantity of such work performed (Y_3) . The average cost of performing temporary abatement procedures was specified as a function of the population (N), the population density (X_6) , the wage rate (W^B) , and the quantity of temporary work performed (Y_2) .

The data used in the analysis of costs of abatement work pertains to direct field costs. One hundred and thirty-five observations were available for permanent work (24 districts in Florida for 1966-1971) and 72 observations (3 years) on temporary (adulticiding and larviciding) activities, (see Appendix Tables 3 and 4).

The results of the estimations (Table 5:2) indicate that there are economies of scale in the performance of permanent abatement work, but no significant economies in temporary work. These results are ascertained from the statistically significant negative coefficient of the acres put under permanent control (Y_3) and the nonsignificant coefficient on the acres sprayed variable (Y_2) . The other explanatory variables possess the expected signs.

Table 5:2 - Average Cost of Permanent and Temporary Abatement Procedures; Empirical Estimates - Economies of Scale Regressions, Constant 1967 Dollars

Independent Variable	Average Cost Permanent Control (Py) 3	Average Cost Temporary Contro (P _Y) 2
Intercept	4.118 ^{a,b}	-4.370
Population (N)	0.200*** (4.332)	0.231*** (4.406)
Wage Rate (W ^B)	0.602* (1.658)	0.493 (1.141)
Permanent Control (Y ₃)	-0.439*** (-9.328)	
Temporary Control (Y ₂)		-0.021 (-0.312)
Population Density (X ₆)	-0.081** (-1.911)
Coeff. Mult. Det., R ² F Value reg. F Sample Size (n)	0.408 30.056 135	0,351 8,925 71

^aProbability levels, .01 = ***, .05 = **, .10 = *

^bValues in parenthesis are t values

The interesting feature of this cost analysis is the determination of how rapidly the average costs change as the quantity of each work activity changes. This is illustrated in Figure 5:1. All of the explanatory variables were assumed to be at their mean values, while the value of the acres treated by permanent procedures was altered. This provided estimates of how the average costs changed as the work level changed.

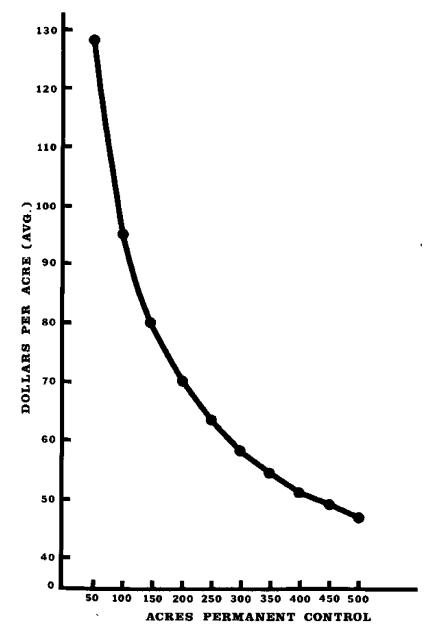


FIG. 5:1 AVERAGE COST OF PERMANENT CONTROL, CONSTANT 1967 DOLLARS

The average cost of ditching fell from a high of \$128.94 per acre when 50 acres per year were ditched to a low of \$46.91 per acre when 500 acres were ditched. The rate of decrease in cost was very rapid when acreage increased from 50 to 100 to 150, but the rate of decline became slower and slower as the scale of work per year increased to the 500 acre level.

In contrast, the spraying costs per acre was not significantly affected by the acres sprayed and this leads us to the assumption of constant costs per acre of temporary chemical control.

VI. IMPLICATIONS OF RESULTS

TEMPORARY CONTROL COMPARED TO PERMANENT CONTROL

It was determined that the responsiveness of mosquito numbers to acres chemically treated was 5.88 times the same response from the number of acres under permanent control. It was further determined that a 10% increase in the number of acres sprayed caused the mean number of mosquitoes per light trap night to fall by 3.60 (all other variables being at their means). A similar 10% increase in permanent control (all other variables constant) resulted in a total reduction of 3.37 mosquitoes (or 2.79 if one adjusts for the fact that benefits are delayed) over the total life of the ditch (10-year average).

To compare the efficiency of temporary to permanent procedures, one must discount the mosquito reductions from permanent abatement because the reductions are spread over a 10-year period (average of all districts). Discounting is based on the concept that a benefit in the future is worth less than the same benefit today, and that the value of a future benefit can be determined through the use of an interest rate. Discounting, then, must be used because future mosquito reductions have a lower value to the citizen than the same reduction in the current time period.

Comparisons were made between permanent and temporary abatement procedures. The interest rate used to discount the future benefits was

7%. A higher interest rate would lower the value of future benefits while a lower interest rate would increase the value of future benefits. The 7% rate was chosen because it was a suggested interest rate for water resources investments as outlined by the Water Resources Council (Water Resources Council, 1971). The results of the discounting procedures are presented in Table 6:1. The mosquito reductions for each year were calculated by assuming all explanatory variables to be at their means, except the quantity of acres put under permanent control and quantity of acres sprayed. The quantity of the abatement activity was increased by 10% from the mean value, and this value was entered into the abatement equation $(Y_1 \text{ Table 5:1})$. This provided an estimate of the number of mosquitoes that would be present under such conditions. By taking the difference between the number present when the abatement activity was at its mean level and the number present when the activity was 10% above the mean level, the reduction in the number of mosquitoes per light trap night was calculated. For permanent abatement, the reduction extended over 10 years, so discounting was performed and then comparisons were made. A straight line 10-year depreciation schedule was used. The formula used to generate the measure of the mosquito re-

duction was
$$\sum_{t=0}^{n-1} \frac{n-t}{n} \cdot \left(-B_{1} \overline{Y}_{1} / (1+0.07)^{t} \right) \text{ where } n = 10, t = 0,$$

1,....9; $-B_{j}$ = the marginal productivity of permanent abatement; \overline{Y}_{j} = mean number of mosquitoes per trap night; $(1 + 0.07)^{t}$ = discount formula; $\frac{n-t}{n}$ = depreciation schedule.

These calculations show that a 10% increase in permanent work reduces mosquito numbers over the life of the facility by 4.4% (2.79 \div 63.2). Temporary control was 1.29 times as effective as permanent control procedures as shown in Table 6:1.

The comparison that is most appropriate, however, is one of relative physical efficiency in relation to cost of performing such activities. Economic theory provides insight into the decision process of the quantity of each control procedure to utilize. The decision principle is that a district attempting to minimize cost (within a certain budget constraint) and to maximize benefits would adjust temporary and permanent work activities until the marginal physical efficiency of temporary abatement per dollar of cost is equal to the marginal physical efficiency of permanent abatement per dollar of cost. The costs are only the direct field costs, in this situation, and do not include any indirect costs since they do not change as work completed changes.

Table 6:1 - Reduction in the Average Annual Mosquito Collection Per Light Trap Night Resulting from a 10% Increase in Permanent Control (Discounted) and Temporary Control

Year	Permanent Control (Discounted)	Temporary Control
1 2 3 4 5 6 7 8 9 10	.6130 .5156 .4283 .3503 .2806 .2186 .1634 .1145 .0714 .0333	3.60
Total	2.7890	3.60
Ratio:	Temporary/Permanent = $\frac{3.60}{2.78}$	<u>9</u> = 1.29

The physical efficiency comparisons were made in the previous portion of this section, and the numerical comparisons were made in Table 6:1. The comparisons involving cost will be made using the means of the logarithmic equations (geometric means rather than the arithmetic means). The results will be very similar, but it is a more direct procedure to use the means from the estimated equation. The mean acres sprayed was 311,931 and the mean acres under permanent control each year was 1,532 acres. A 10% increase for each of these activities represented an additional 31,193 acres sprayed and an additional 153.2 acres ditched. These additions would bring the total acres sprayed to 343,862 (311,93) + 31,193) and the acres ditched to 316.4. The 316.4 acres is the sum of the 163.2 acres required to maintain the stock of 1,532 acres and the 153.2 acres (1,532 x 0.10) necessary to increase the stock by 10%. The average cost of performing the additional 153.2 acres permanent work was \$57.44 per acre and the cost for spraying the additional 31,193 acres was \$0.104 per acre. These cost figures were determined by entering 316.46 acres into the permanent average cost equation of Table 5:2. The average cost of spraying was used since there are no scale economies involved. The cost equation permits the analysis to incorporate reductions in cost per acre of permanent work instead of simply applying the overall average costs to all changes in acreages.

By utilizing the physical reductions in mosquito numbers per unit of temporary and permanent control of Table 5:1 and the cost equation in Table 5:2, one can calculate the costs of reducing the mean number of mosquitoes per light trap night by 1.0 as: 6,354 for permanent and 1,817 for temporary abatement work¹. This result indicates that additional expenditures on spraying are more productive than expenditures on permanent work. The cost to lower the light trap count by 1.0 is 3.50 times higher for permanent work than it is for temporary work (see Table 6:2). This comparison involves only the direct dollar costs and does not include any evaluation of environmental side effects.

The 3.5 to 1 superiority of temporary work is based on an average

¹Based on \$57.44 per acre for permanent work and \$0.104 for temporary work from equations in Table 5:2.

ditch life of 9.7 years with a range from 5 to 12 years. Three additional analyses were conducted to determine how sensitive the results are to the length of ditch life. The following lives were used: 15 years with a range from 8 to 18 years; 20 years with a range from 12 to 24 years; and 25 years with a range from 15 to 30 years. The results are presented in Table 6:2.

The length of ditch life reduces the relative advantage of temporary control over permanent control from 3.5 (life of 9.7 years) to 1.4 (life of 25 years), but temporary abatement still retains a relative advantage.

Table 6:2	-	Comparisons of Average Ditch Life and the Associated
		Expenditures Required to Reduce Annual Mean Light
		Trap Counts by 1.0.

Average Ditch Life (Years)	Expenditure Re Mean Annual Li	quired to Decrease ght Trap Count by 1.0	Ratio: Permanent
	Permanent	Temporary	Temporary
9.7	\$6,354	\$1,817	3.50
15.0	4,608	ة,892 1,969	2.44 1.98
20.0 25.0	3,903 2,863	2,037	1.41

Therefore, based on the best estimates of the effect of abatement activities on light trap counts and costs per unit of work completed from 30 districts over 13 years, it appears that expenditures for temporary activities are more productive. Our figures indicate that districts get three and one-half times as much control from temporary as permanent activities per dollar of expenditure. This calculation is performed at the data means: 311,931 acres of chemical treatment and 1,532 acres under permanent control. It can be seen in Figure 5:1 that permanent work would be much less expensive for larger districts because of economies of scale. The cost of temporary work would not decrease for larger districts, however, because there are no economies of scale to be obtained. Very large districts (900-1000 acres of ditching per year) may find temporary work as expensive as permanent work in terms of mosquitoes controlled. Contrarily, a small district must face high permanent control costs per acre as shown in Figure 5:1 and would therefore find temporary abatement much cheaper.

FORMATION OF NEW ABATEMENT DISTRICTS

One of the purposes of this study was to develop procedures for evaluating the likely demand for and costs of mosquito abatement in coastal areas which are considering initiating or increasing abatement activities. The study areas in Florida included 13 districts with populations of 10,000 - 30,000 people and high salt marsh mosquito populations, so that those districts are particularly similar to many other coastal areas, particularly those of North Carolina and South Carolina. These sparsely-populated coastal areas have special characteristics compared with the typical (mean) mosquito abatement districts (70,000 people). One of the major differences is that per capita local expenditures are much higher since there are fewer people to share the costs of a minimum control effort. Per capita expenditures from local funds may be 3 to 4 times as high as the average expenditure per capita for all 30 districts (\$1.27 in 1970).

The sharing arrangements in the state of Florida encourages small districts to collect local funds in order to get state matching funds. As equation Y_4 in Table 5:1 indicated, a 10% increase in state funds

leads to about a 3.5% increase in local funds. This type of matching arrangement is not available in most other states. It is not possible to accurately project the effect of no matching funds, but it is clear that this is one of the major stimulants of expenditure in sparsely populated districts in Florida. On the other hand, as Figure 3:5 indicated, state aid per capita (constant 1967 dollars) has been falling in recent years in Florida.

Per capita income, wage rates, and tourism also differ in the sparsely populated coastal areas. For example, Carteret County, North Carolina, has higher tourism (in terms of lodging workers per capita) but slightly lower per capita incomes and wage rates than the mean of the sample of districts in this analysis. Mosquito populations in coastal North Carolina seem to be slightly higher than the typical Florida district (mean of 63.2 per light trap night). For example, the 1973 light trap count for 4 locations in Carteret County was 75, (Axtell, 1974b).

Even though people are willing to expend \$4 to \$5 per person (\$4.40 in 1970 for 13 small districts in Florida) of local tax dollars for abatement in the smaller sample districts, these low population districts have smaller total budgets (\$134,000 compared with \$302,000 for all districts), they perform less abatement work and control fewer mosquitoes. Less work is performed because the small districts have small budgets and high unit costs of permanent control, as indicated in Figure 5:1.

It is clearly less expensive per person to abate mosquitoes in heavily populated areas. Nany other areas are willing to tax themselves if they have reasonably high mosquito populations and state support. The formation of new districts is difficult because of high costs per unit of permanent control, but this is not the case with temporary control. There appears to be no advantages of size in chemical control. Chemical.control measures will have economic advantages over permanent control measures (ditching or impoundments) in sparsely populated districts based on relative costs and benefits found in similar districts of this study.

This study has not investigated the economic, demographic, and biological factors effecting the demand for state appropriations for mosquito abatement; nor have optimal sharing arrangements been investigated. Scale economies favor multiple county, permanent activities. However, earmarked appropriations tend to distort the mix of permanent and temporary abatement work. It is an open question whether the estimated over-investment in permanent control (relative to chemical control) found in the above analysis is traceable to the higher state grants for permanent work¹. The degree of this phenomenon in other areas needs to be evaluated. Further work should probably treat adulticiding and larviciding activities separately since they likely have quite different responses. This study has also not identified the return from monitoring activities which probably vary consistently between districts.

SUMMARY AND CONCLUSIONS

This study examined the responsiveness of mosquito numbers to various types of abatement activities and the incentives to collect taxes to control mosquitoes.

The major findings of the study were: (1) mosquito abatement activities were effective in reducing the mean mosquito abundance in the study area over the 1959-1971 period; (2) economies of scale were present in permanent control (ditching and impoundments), but not in temporary control (chemicals); (3) temporary control was from 1.4 to 3.5 times as effective, per dollar of expenditure, as permanent control; (4) local abatement expenditures per capita (proxy for quantity of abatement) were significantly affected by income, state grants, tourism, the wage rate (proxy for price of abatement), and population; (5) the simultaneous nature of the abatement model was verified statistically; the number of mosquitoes affected the amount of chemical con-

¹Recall that the study only considered the direct abatement costs and the associated changes in mosquito numbers and no consideration was given to possible environmental problems related to either permanent or temporary control.

trol and vice versa.

The number of mosquitoes (as monitored by light trap catches) varied from year to year, but there was definite downward trend over the 1959-1971 period. The average number of acres sprayed per district per year was 484,680 and the number in any given year tended to change in the same direction as mosquito density changed. The amount of permanent acreage under control increased over the 13 years with an average of 6,138 acres per district for the period. The statistical analysis indicated that a 10% increase (above the mean) in permanent and temporary abatement work would significantly decrease mosquito numbers by 4.4% and 5.7%, respectively.

An economies of scale model indicated that the acres of permanent work completed per year significantly reduced the average cost per acre, but no such relationship was found in temporary abatement work. Considering cost and physical efficiency, temporary abatement was shown to be from 1.4 to 3.5 times as efficient as permanent abatement per dollar of expenditure, depending upon the ditch life. The analysis only considered the direct abatement effects of reduced mosquito numbers and did not attempt to account for externalities. Within these limits, it was concluded that there has been an overemphasis on permanent abatement relative to temporary abatement.

One of the objectives was to estimate to what extent per capita income, mosquito numbers, tourism, population, wage rates and state grants influenced the willingness to collect local taxes for mosquito abatement in organized districts. It was found that local expenditures per capita were significantly affected by: income, state grants, tourism, the wage rate and population.

An implication of this analysis is that sparsely populated coastal areas have much higher per capita mosquito abatement costs than heavily populated areas. As mosquito numbers, incomes, tourism and state grants rise, the ability of a district to collect abatement taxes increases. Ditching costs fall as amount of ditching completed per year rises, and chemical control costs fall as human population density rises. Thus, there are incentives to lease, rather than purchase, ditching machinery and incentives to set district boundaries to include areas with high densities of people and mosquitoes. This report provides an overview of mosquito abatement in 30 Districts for 13 years. Similar procedures could be used to analyze the economics of mosquito abatement in a single district or in an area contemplating the formation of an abatement district. This would provide useful input to the decision-making process.

This study suggests that economic incentives exist for group action in mosquito control, although these incentives are less direct than those for individual action to control insects in crop production. The willingness to pay for mosquito abatement is quite responsive to price and income levels. Economic analysis of the demand for and cost of mosquito abatement can be accomplished by means of simultaneous regression equations following the proper formulation of conceptual models which take into consideration the mosquito biology, abatement procedures and practices, and the economic incentives of the taxpayers.

REFERENCES

- American Mosquito Control Association. 1968. Ground equipment and pesticides for mosquito control. American Mosquito Control Association Bulletin No. 2: 101 p.
- American Mosquito Control Association. 1972. Mosquito News 32(2), Unnumbered 2nd page.
- Axtell, R. C. (editor). 1974a. Training Manual for Mosquito and Biting Fly Control in Coastal Areas. UNC Sea Grant Publication UNC-SC-74-08: 254 p.
- Axtell, R. C. 1974b. Unpublished Records of Mosquito Counts.
- Borcherding, T. E. and R. T. Deacon. 1972. The demand for the services of non-federal governments. American Economic Review LXII: 891-901.
- Carlson, G. A. 1970. A decision theoretic approach to crop disease detection and control. American Journal of Agricultural Economics 52: 216-223.
- Clements, A. N. 1963. The Physiology of Mosquitoes. MacMillan Company, New York: 393 p.
- DeBord, Donald V. 1974. Demand For and Cost of Salt Marsh Mosquito Abatement. Unpublished Ph.D. thesis, Economics Department, North Carolina State University.
- Dukes, J. C., R. C. Axtell and K. L. Knight. 1974. Additional Studies of the Effects of Salt Marsh Impoundments on Mosquito Populations. Water Resources Research Institute Report No. 102, North Carolina State University, Raleigh, North Carolina.
- Ferguson, C. E. and S. C. Maurice. 1970. Economic Analysis. R. D. Irwin, Homewood, Illinois.
- Florida. 1959. Florida Statutes, C 388, Sec. 021.
- Fultz, T. O., M. L. MacDougal and E. C. Thrift. 1972. Observations of ground ULV applications in Chatham County, Georgia. Mosquito News 32(4): 501-504.
- Gerhardt, R. R., et al. 1973. Public Opinion on Insect Pest Management in Coastal North Carolina. North Carolina Agricultural Extension Service, Misc. Publication No. 97.
- Haeger, J. S. 1960. Behavior preceding migration in the salt marsh mosquito, Aedes taeriorhynchus (Wiedemann). Mosquito News 20(2): 136-147.

- Hall, D. C. and R. B. Norgaard. 1973. On the timing and application of pesticides. American Journal of Agricultural Economics 55: 198-201.
- Headlee, T. J. 1945. The Mosquitoes of New Jersey and Their Control. Rutgers University Press, New Brunswick, New Jersey.
- Headley, J. C. 1972. Defining the economic threshold. In Pest Control Strategies for the Future. National Academy of Sciences, Washington, D. C.: 100-108.
- Hermes, W. B. and H. F. Gray. 1940. Mosquito Control. Commonwealth Fund, New York.
- Hoffman, R. A. and W. C. McDuffie. 1962. The 1962 Gulf Coast mosquito problem and the associated losses in livestock. Proc. N. J. Mosquito Extermination Association 50: 421-424.
- Horsfall, W. R. 1955. Mosquitoes, Their Bionomics and Relation to Disease. Ronald Press, New York.
- Horsfall, W. R. 1962. Medical Entomology, Anthropods and Human Disease. Ronald Press, New York: 723.
- James, M. T. and R. F. Harwood. 1969. Herm's Medical Entomology. MacMillan Company, New York: 484.
- Kmenta, Jan. 1971. Elements of Econometrics. MacMillan Company. Chapter 8.
- Knight, K. L. and T. E. Baker. 1962. The role of the substrate moisture content in the selection of oviposition sites by Aedes taeniorhynchus (Wiedemann) and Aedes sollicitans (Walker). Mosquito News 22(3): 247-254.
- LaSalle, R. N. and K. L. Knight. 1973. The Effects of Ditching on the Mosquito Populations in Some Sections of Juncus Salt Marsh in Carteret County, North Carolina. Water Resources Research Institute Report No. 82, North Carolina State University, Raleigh, North Carolina.
- Lee, J. Y. and M. R. Langham. 1973. A simultaneous equation model of the economic-ecologic system in citrus groves. Southern Journal of Agricultural Economics 5(1): 175-180.
- National Resources Committee. 1938. The Problem of a Changing Population, U. S. Government Printing Office, Washington, D. C.
- Nielsen, E. T. and A. T. Nielsen. 1953. Field observations on the habitats of Aedes taeniorhynchus. Ecology 34(1): 141-156.

- North Carolina. 1957. North Carolina Statutes, Chapter 130, Article 24.
- Provost, M. W. 1958. Facts about the salt marsh and its mosquitoes. Fiorida State Board of Health, Entomology Research Center: 12 p.
- Rice, D. P. 1968. The direct and indirect costs of illness. <u>In</u> Federal Programs for the Development of Human Resources, Joint Economic Committee, Economic Progress Subcommittee, U. S. Congress, Vol. 2.
- Schoof, H. F. 1970. Present and potential control techniques. <u>In</u> Proceedings Workshop on Mosquito Control in North Carolina. Water Resources Research Institute Report No. 36, North Carolina State University, Raleigh, North Carolina.
- Steelman, C. D., et al. 1972. Effects of mosquitoes on the average daily gain of feedlot steers in southern Louisiana. Journal of Economic Entomology 65: 462-466.
- Travis, B. V. and G. H. Bradley. 1943. The districution of Aedes mosquito eggs in salt marshes in Florida. Journal of Economic Entomology 36(1): 45-50.
- Water Resources Council. 1971. Proposed Principals and Standards for Planning Water and Related Land Resources. Federal Register, 36: 24145-24194.
- Water Resources Research Institute. 1970. Proceedings Workshop on Mosquito Control in North Carolina. Water Resources Research Institute Report No. 36, North Carolina State University, Raleigh, North Carolina.
- White, C. M. 1957. Report of the North Carolina Salt Marsh Mosquito Study Commission, Raleigh, North Carolina.
- Young, R. C. 1964. Economic Aspects of Mosquito Control with Special Reference to a Control District in Florida. Unpublished M. S. thesis, Economics Department, University of Florida.

Appendix Table 1: Individual Mosquito District Variable Descriptions and Data Transformation

- Y_1 = number of mosquitoes per light trap night
- Y_2 = acres chemically treated during the year (once over)
- Y_3 = acres permanent abatement work during the year; $Y_3 = X_{13} + X_{14}$
- Y_{4} = local expenditure per capital (dollars); $Y_{4} = \frac{X_{10} X_{11}}{N \cdot W^{B} \cdot X_{20}}$

 $P_{\gamma_2} = cost per acre chemically treated (dollars)$

 ${}^{P}Y_{3} = cost per acre of permanent control activity (dollars)$

- X₁ ≈ inches of storm rainfall accumulation during the mosquito season measured as 2" on any one day or a period of days having 1" per day with at least one day of 2"
- X₂ = number of rainfall sequences in relation to the proportion of potential mosquito breeding acreage under permanent abatement;

$$X_2 = X_{12} \cdot (1 - \frac{X_{13} + X_{14}}{X_{15}})$$

 X_3 = average district temperature May 1-October 31 (degrees F.)

- $X_4 = \text{stock of permanent abatement acres (depreciated); } X_4 = X_{13} + X_{14}$
- X_5 = total budget of the district (state plus local), deflated by the wholesale price index; $X_5 = (X_{17} + X_{18})/X_{20}$ (dollars)
- X_6 = population density of the district; $X_6 = N/X_{10}$
- X_7 = income per capital dollars (deflated)
- x_8 = state grants per capita (deflated); $x_8 = x_{18}/N$

 $X_9 = tourism per capita; X_9 = X_{21}/N$.

- W^{B} = wage rate raised to the ^Bpower (B = labor's share of total expenditure)
- N = population in the district

 $X_{10} = local expenditure on abatement activities (dollars)$

X₁₁ = sanitary land fill expenditures (proportion financed out of local funds);

 $X_{11} = \frac{\text{local expenditures}}{\text{local + state expenditures}} \quad \begin{array}{c} \text{total sanitary} \\ \text{land fill} \\ \text{expenditures} \end{array}$

- $X_{12} = number of 1/4"$ rainfall days, two-day dry interval
- X_{13} = acres permanent control via ditching (depreciated);

Group 1: $X_{13_t} = \frac{11}{12} X_{13_{t-1}} + Y_{3_t}$ Group 11: $X_{13_t} = \frac{4}{5} X_{13_{t-1}} + Y_{3_t}$ Group 111: $X_{13_t} = \frac{7}{8} X_{13_{t-1}} + Y_{3_t}$ when $X_{13_{t-n}} = 1958$, set $X_{13_{t-n}} = X_{16}$

 X_{1L} = acres permanent control via diking

 X_{15} = acres of potential mosquito breeding area

 X_{16} = acres under permanent control in 1959

 $X_{12} = local budget for mosquito abatement$

 X_{18} = state budget for mosquito abatement

 X_{10} = square miles in the mosquito abatement district

 X_{20} = wholesale price index

X21 = tourism proxy; the number of employees working in all lodging
establishments

Locations (LOC) and Code Numbers:

1. Brevard Co., Fla. 18. Nassau Co., Fla. 2. Broward Co., Fla. 19. Palm Beach Co., Fla. 3. Charlotte Co., Fla. 21. Pinellas Co., Fla. 4. Citrus Co., Fla. 22. St. Johns Co., Fla. Collier Co., Fla. 5. 23. St. Lucie Co., Fla. 7. Duval Co., Fla. 24. Santa Rosa Co., Fla. 8. Escambia Co., Fla. 25. Sarasota Co., Fla. 10. Franklin Co., Fla. 26. Volusia Co., Fla. 11. Hillsborough Co., Fla. 28. Walton Co., Fla. 12. Indian River Co., Fla. 29. Chatham Co., Ga. 13. Lee Co., Fla. 31. Delaware (State) 14. Levy Co., Fla. 32. Cape May Co., N. J. 15. Manatee Co., Fla. 33. Monmouth Co., N.J. 16. Martin Co., Fla. 34. Ocean Co., N. J. 17. Monroe Co., Fla. 35. Virginia Beach, Va.

_
Part
Data,
strict
Mosquito Dì
Individual
3:
Table
Appendìx

_

	4	-	'2	<u>m</u>	4	-	2	6	t
-	05	101-9	2142452	355+762	2.44222	10.97	12-4414	19.8	
4		144.2	• •	663-402	1.42370	24-26	11-2709	79-0	12203-9
•	87	1.07	2340851	530.264	1.28071	11.55	7.4626	79.0	
4	;2	1-962	2896835		1.32745	12.71	10-5601	79.7	15599.8
4	3 4	57.1	51403	120-364	1.30438	7 - 24	5-5009	78.7	17305.7
•	3	1001	44079	112.693	1.18629	9.18	6.6127	78.4	18330.5
4	5 4	74.4	2630	177-215		00*0	4.7303	75.8	19083.8
	54	250.5		702-628	1.10401	25.16	6.9930	78.2	20464.2
-+	2 4	198.0	1832527	387.770	1.06509	6.87	5.6904	77.5	21870.9
4		1 30.5	1183385	367.115	0.93681	16.36	4.7901	7-77	22829-9
4	3		734889	575-073	1.01463	7.61	4.3209	78.7	23827.3
	55	4.9.4	553490	661.816	1.11468	7-4l	2.3065	78.5	24677.4
	2	241.5	1405109	- 1	0.95923	00*0	2.4774	1.97	25354.9
• •		129.8	20848	552-670	0.17578	14.85	14.4733	81.3	752.7
4 6	5	8-64	139767	649.751	0.11158	20.77	8.9915	81.2	1376.7
• •	32	6-19 4 8-9	82082	373.123	0.12469	4.07	3.5114	80.8	1717.2
••	5	5-64	167762	488.207	0.10490	9.85	0.5312	80.5	2127.0
. n	5.9	51.0	199434		0.11393	12.42	0.0210	80.4	2357.4
•	49	46.5	220028	395*966	7	20.62	0120.0	80.0	2630.7
- N	65	30.8	222828	277.490	0.12376	22.59	0.0160	19.4	2712.4
	99	24-4	120752	258.199	7	20.59	0-0220	80.1	2768-0
	67	36-3	156924	265.230	0.11490	27.28	0.0200	79.6	2826-0
5	68	10.8	199144	244-387	0.13130	21.57	0.0230	79.1	2858.3
. ~	69	5	176306	251.609	0.21180	12.67	0.0260	80.5	2895.1
	22		172561	-64 -	0.15121	8.82	0-0190	78.4	2926.9
• •	2.2	32.5	269884	135.931	7	00-0	0-0190	78.6	2842.3
1 (7	50	20-2	424583	495.487	2.22342	36.78	23.1423	80.8	5495.5
	90	70-6	307976	507-126	2.55543	11-75	13.3366	80*8	5544.7
	61	58.4	259976	614-759	2.64479	4.97	15.9490	80-7	5691-4
	62	91-0	341868	491.238	2.50567	12.65	ο.	81.4	5713.8
	5	34.6	425359	501.847	3.46926	19.90		80.7	5739.5
	49	90.5	656826	499.161	2.58304	5.48	15.9263	80.1	đ
	65	13.0	640487	402+885	5933	7.50	m	79.4	5683+2
	99	9-2	481747	532.004		64*4	17.7033	78.9	5741-6
	67	24.0	425262	71.920	2+20749	7.03	•	78.8	5335.1
	99	12.3	385262	598.161	3-63517	12.92	19.5850	78.9	
	69	10.4	467929	402.241	5.63443	5.42		7.67	5433+5
	22	5.9	510353	151.866	3.86119	4.70	17.0496	79.5	5132.6
,	•								

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
99 11.8 205188 134.50 4.49149 14.63 23.4681 79.7 21 61 27.9 230594 84.989 7.61300 17.46 19.3711 79.0 21 62 48.7 230594 84.989 7.61300 17.46 19.7705 79.0 21 63 52.6 530594 84.0732 64.0732 10.71740 79.2 717.9 64 7.1 930650 15.55054 95.36 96.777 78.9 78.7 100 67 7.1 930650 15.51176 5.276 97.20 112.7400 78.9 97.2 710 31.1 700142 54.500 97.20 117.77 79.9 112 711 632.61 182.911 182.916 97.20 117.77 79.9 112 64 91.61 192.7703 92.2551510 54.276351 112.7771 79.9 112 710 91.61 10.01 10.01	LOC	YR	۲ ₁	Y 2	۲ ₃	44 Y	۲ _×	x2	×3	x4
60 32.9 230594 66.989 7.61300 17.46 19.371 79.0 57 61 27.5 23318 9.607 17.9 66 9.67 17.9 66 62 44.0 27318 9.10.577 7.0.31 9.47 79.3 95.35 63 74.0 273189 94.67 7.7 79.3 95.36 64 7.1 370950 115.477 6.74032 10.10 17.7480 78.9 97.3 66 7.1 242.925 5.550048 5.516049 15.61752 79.3 113 67 7.1 107052 198.245 5.56049 13.51 112072 79.3 113 70 9.20 106.471 5.46057 13.51 112.572 79.4 113 71 6.7152 71.6711 199.56 5.772 16.7152 79.3 113 71 6.05 10.6 17.710 192.449 25.400 11.777 79.4 103 71 6.011 71.71 110.465 24.96	4	59	13.8	205188	18	186		23-4881	79.7	136.5
61 27.5 253479 161.657 6.02779 9.65 15.0793 79.2 64 63 44.0 2731695 316.577 70.778 77.79 66 77.77 77.9 66 64 7.1 480.77 5.0573 5.146.6 19.7787 79.9 66 64 7.1 9306.97 5.4546.99 15.110.10 17.7491 79.9 66 66 7.6 1994.697 5.456.99 15.511 180.317 79.9 101 67 709142 242.927 5.456.99 13.51 11.5198 77.9 69 71 63.2 2936.93 180.977 5.456.99 13.51 11.9 19.2 11.1 70 3.11 7055.1 180.477 5.456.99 13.51 11.0 11.1 11.1 11.1 11.1 11.2	4	60	32.9	230594	80	3	17.46	19.3371	79.0	
62 46.7 370959 316.573 6.17732 0.00 17.972 7.976 6.6 63 77.8 5.550 10.7776 10.7776 77.9 6.5 64 7.1 5.2513 5.550 15.477 7.460 77.9 6.5 65 7.2 5.89549 5.1753 6.1731 79.6 79.7 79.6 66 7.1 939939 5.85676 5.25 10.7175 79.4 10.7 67 7.1 939339 5.85676 5.27 10.7 79.4 10.7 66 44.65 10.2 10.2 247.793 5.2773 10.7 79.9 11.7 71 5.1 10.755 10.7 2.7 10.7 79.4 11.1 61 36.7 10.2 2.7 10.2 2.7 10.7 79.4 11.2 71 11.2 11.2 24.7 2.2 10.7 2.2 10.7 10.7 10.7 <td>4</td> <td>61</td> <td>27.5</td> <td>253479</td> <td>81.85</td> <td>8</td> <td>9.65</td> <td>5</td> <td>79.2</td> <td></td>	4	61	27.5	253479	81.85	8	9.65	5	79.2	
63 44.0 203189 45.077 7.03331 5.5 10.3 17.7 6.5 64 322353 103.027 5.45049 11.3 17.7 10.5 17.7 10.5 17.7 10.5 17.7 10.5 17.7 10.5 17.7 10.5 17.7 10.5 17.7 10.5 10.5 17.7 10.5 10.7 17.5 10.5 10.7 17.5 10.5 10.7 17.5 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 <td>4</td> <td>62</td> <td>48.7</td> <td>7095</td> <td>16.</td> <td>8.17732</td> <td>0.00</td> <td>2</td> <td>19-9</td> <td>661-5</td>	4	62	48.7	7095	16.	8.17732	0.00	2	19-9	661-5
64 52.8 32.0273 63.027 6.21466 14.66 19.7707 77.9 660 67 7.6 9396.93 115.477 6.17900 11.5077 79.6 900 67 7.6 640450 115.477 6.17900 8.21 11.5077 79.6 900 67 7.6 640450 182.8184 6.554699 13.51 11.5077 79.6 900 67 91.0 8.21 11.5077 79.6 900 113.9 78.7 1130 67 91.0 822.81 182.912 4.277930 2.2.21 2.2.549 123.918 79.6 900 61 30.1 3.31176 22.21 2.4.600 80.7 72.2 123.918 70.7 79.6 90.7 72.2 61 30.1 13.47 22.258 4.449 21.449 23.3496 80.7 75.4 77.4 90.2 62 101.0 4449 2.2.58 4.444 2	4	63	44.0	0318		7.03331	5.50	10.7786	79.3	651.4
65 11.2 460050 115.477 6.74032 10.10 17.440 78.9 70.9 61 7.10 932651 180.977 6.55409 13.51 11.5072 79.3 113.9 61 7.10 932651 180.977 6.554099 13.51 11.5072 79.3 1122 70 3.11 61.5 70.524 182.377 6.554093 13.51 11.5012 79.2 1122 71 63.2 806.475 182.377 6.554033 192.2212 24.4096 79.2 1122 71 63.2 106.00 79.2 14.407 27.2 1122 122 60 91.0 366159 222.510 2.45532 22.549 10.208 112.2 122	4	64	52.8	2235		6.21466	14-66	19.7307	77.9	660+2
66 2.6 646651 242.395 6.85008 5.36 16.3177 79.3 1070 67 7.1 932651 180.977 6.82676 9.20 17.7177 74.3 1125 69 7.0 852651 180.977 6.82676 9.20 17.7177 74.3 1125 71 5.1 979459 180.977 5.4659 13.55 1125 1125 59 60.6 295573 0.000 3.31176 22.21 24.0006 81.3 222 61 36.5 252.510 2.55314 14.47 20.000 81.3 222 1300 00.2 222 1300 00.2 222 1300 00.2 222 1300 00.2 222 1300 00.2 222 146.39 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4 <	4	69	17.3	480050		6.74032	10.10	•	78.9	720.6
67 2.6 709142 242.395 6.1750 8.21 18.319 76.7 197.2 71 6.3.1 709142 54569 9.3.51 11.572 77.9 11305 71 6.3.2 805159 5.54699 9.3.51176 2.77 16.7152 79.9 11305 71 63.12 805159 2.225510 2.45184 14.4006 80.7 79.9 11305 60 91.8 3.66159 2225.510 2.56144 14.40 80.7 72.9 11305 60 3.60 4.561 11.6 22.516 2.56144 14.407 80.7 222 61 36.2 23144 11.4 7 20.3465 80.2 222 62 101.0 445343 113.455 113.456 103.47 100.8 222 22.561 22.551 22.561 22.561 22.561 22.561 22.556 80.2 222 22.561 22.556 80.2 22.556 80.2 222 22.556 22.556 22.556 22.556 22.556 22.556	4	66	2-6	646451	.92	5.85048	5.36	317	79.6	903.5
68 7.1 939639 158.184 6.56693 13.51 11.5072 79.3 1139 70 3.1 7052851 180.377 6.85693 13.51 11.5072 79.3 1125 71 53.2 100.677 595273 0.000 3.1176 2.72 16.4717 79.3 1225 60 91.8 306157 79.2510 3.2.81176 2.7518 2.40000 80.7 2.479 61 36.2 295273 0.000 3.1176 2.2.21 2.40000 80.7 2.449 62 101.0 445384 2.455494 3.48559 4.96 80.7 2.449 63 101.0 445345 210.409 80.7 2.449 64 80.1 11.47 2.3.499 80.7 2.449 65 210.9 113.475 5.45180 11.417 2.3.499 80.7 2.449 65 210.9 11.475 5.46180 11.444 2.49756 80.4	4	67	2-6	709142	242.395	6.17590	8.21	18-3198	78.7	1070.6
69 4.0 852851 180.977 6.82676 9.20 17.771 79.9 1225 71 6.12 806403 192.379 4.77930 2.72 16.7752 79.4 1305 71 6.12 806403 192.379 4.77930 2.72 16.7752 79.4 1305 60 91.8 316849 245.489 2.48593 4.96 19.5705 80.7 222 61 36.2 316849 245.2410 2.45892 2.52518 20.7664 80.7 222 63 101.0 445383 113.29 2.58144 11.47 22 582 22 27 449 63 62.1 603686 109.77 8.74659 5.4914 14.49 23.3896 80.2 582 65 314.7 1023357 109.75 8.74659 5.40 21.2205 79.4 806 66 193.46 11.469 5.4950 60.7 24.20 79.7	4	68	7.1	939639	158-184	6•54699	13.51		79.3	1139.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	69	0 * 4	852851	180.977	6.82676	9.20		79.9	1225.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	70	3.1	770524	182,379	4.77930	2.72		79.8	
59 606 295773 0.000 3.31176 22.21 24,4000 813 222 60 918 366159 222.510 2.65314 1117 207664 807 222 61 362 316849 252.510 2.65314 1117 203865 803 522.444 62 101.0 445383 119.45 5.10076 17.81 44.49 233696 803 582. 64 80.1 714717 119.45 5.10076 17.81 14.474 803 582. 65 210.9 17.411 119.745 5.10409 2193 796 593. 65 210.9 17.61 119.745 5.91076 5.92.991 797 797 64 191 119.746 6.04009 2193 230906 803 757. 64 1931 1117 20.1182 796 797 797 64 191 1117 201182 797 797 797 70 3146	4	71	63.2	806403	192-912	4.22903	8.05	14.0908	79=2	
60 91.8 366159 222.510 2.62852 22.59 20.7664 80.7 222 61 36.2 31687 245.498 3.48559 4.96 19.5505 80.2 449 62 101.0 445343 119.29 5.53144 11.17 20.3385 80.2 449 64 80.1 714717 119.45 5.10076 17.81 44.4974 80.3 553 65 210.9 1420370 109.77 8.74659 5.40 21.2205 79.6 708. 65 210.9 13447 1021357 108.24 6.04009 21.2193 23.2006 60.3 3757 67 343.1 1394262 114.75 5.79450 13.44 15.7187 79.6 709. 68 270.3 129574 11.449 23.4095 80.3 757 68 270.3 13426 114.75 5.799 79.6 79.6 71 222.41 11.475 5.7915 79.4 79.6 79.6 71 222.71 12241	ŝ	59	60.6	295273	00000	3.31176	22.21	24.0000	81.3	
61 36.2 316849 245.498 3.48559 4.96 19.5505 80.2 449 62 101.0 445383 113.29 2.53814 14.49 23.3596 80.3 582. 65 80.1 714717 119.45 5.103048 5.05381 14.49 23.3596 80.3 582. 65 210.9 14220370 109.77 8.74659 5.40 21.2205 79.6 708. 65 314.7 1021357 105.90 5.92547 5.1493 73.6 80.3 582. 67 1931426 114.75 5.92547 13.447 15.705 79.6 769. 69 193.1 1345282 114.475 5.92547 15.6 75.7 69 193.6 13.65590 5.92546 14.467 708.8 55.7 71 26.48 17.616 21.2205 79.49 769.4 71 26.5 13.6650 14.467 5.400 21.2205 7	Ś	6 0	9.16	366159	222.510	2+62852	22,58	20-7664	80.7	222.5
62 101.0 445383 113.29 2.58144 14.49 23.3696 80.6 525. 64 80.1 714717 119.45 5.63314 11.17 20.3885 80.3 582. 65 314.7 1021357 109.77 8.74659 5.40 21.2205 79.6 592. 65 314.7 1021357 108.24 6.04009 21.93 23.3096 80.3 757. 65 314.7 1021357 108.24 6.04009 21.93 23.0906 80.3 757. 64 314.7 1021357 108.24 6.04009 21.93 23.0906 80.3 757. 67 343.1 1196744 114.75 5.99914 24.817 79.6 860. 70 69.8 1364282 0.00 5.99914 24.00 17.3649 79.1 860.3 71 222.7 1798732 0.00 5.99914 24.00 79.6 8452. 70 47.5 133.66 0.06150 5.99944 24.00 79.6 8452.	ŝ	61	36.2	316849	245.498	3.48559	4.96	9-550	80.2	449.5
63 62.1 603686 100.88 2.63314 11.17 20.3885 80.3 583. 64 80.1 714717 119.45 5.10076 17.81 44.4974 80.3 553. 65 314.7 1021357 108.74 5.10076 17.81 44.4974 80.3 757. 65 314.7 1021357 108.74 5.04009 51.40 21.2205 79.4 80.3 65 314.7 1021357 108.74 114.75 5.79450 19.45 757. 68 270.3 124362 114.75 5.79450 19.45 78.4 860.3 757. 70 68.8 1331426 114.75 5.79450 19.45 79.1 903. 71 222.7 119672 11.497 5.400 118.264 79.6 769.6 60 1.5 13765 13765 59914 24.01 17.182 79.4 705.6 71 222.7 13765 57956 79.4 79.6 76.7 705.6 60 1.5	ŝ	62	101.0	686344	113.29	•	14.49	23.3696	80.6	525.30
64 60.1 714717 119.45 5.10076 17.81 44.4974 80.8 653. 65 314.7 1021357 109.77 8.74659 5.400 21.2205 79.6 708. 65 314.7 1021357 108.24 6.04009 21.93 23.0906 80.3 757. 67 343.1 1331426 116.75 5.77457 13.44 15.3115 78.4 860.3 68 270.3 1224362 114.75 5.79457 13.44 15.3115 78.4 860.3 70 68.8 1354282 0.00 4.55180 4.00 17.3649 79.3 8399 71 222.77 1798732 0.00 4.56180 4.00 17.3649 79.6 705. 59 1.5 83006 4552.89 0.008767 10.92 71.1 20.1182 79.6 705.6 61 16.6 1.0.55 10.00 4.56180 4.00 17.182 79.6 705.6 62 1.15 8.31 10.55 10.00178 14.22	ŝ	63	62.1	603686	100.88		11-17	20.3885	80.3	582.40
65 210.9 1420370 109.77 8.74659 5.40 21.2205 79.6 708. 64 314.7 1021357 108.24 6.04009 21.93 23.0906 80.3 757. 68 270.3 1224362 114.47 5.99914 24.41 24.31 29.115 79.1 903.3 69 193.1 1196744 11.49 5.99914 24.31 20.1182 79.3 393. 70 68.8 1364282 0.00 5.29954 2.00 18.687 79.4 705. 71 222.7 1196744 11.49 5.99914 24.31 20.11822 79.3 8493 71 222.7 137067 652.89 0.00778 7.00 18.2687 705. 61 16.6 109576 5.23954 0.90578 17.92 2691 7209 62 23.4 0.6558 10.0578 10.57 17.82 77.9 4951 61 16.6 109576 23.09 0.010578 10.67 77.9 4703 <t< td=""><td>÷</td><td>64</td><td>80.1</td><td>714717</td><td>119.45</td><td>•</td><td>17.81</td><td>44.4974</td><td>80.8</td><td>653.32</td></t<>	÷	64	80.1	714717	119.45	•	17.81	44.4974	80.8	653.32
66 314.7 1021357 108.24 6.04009 21.93 23.0906 80.3 757. 67 13 43.1 1331426 114.75 5.79450 195.3115 78.4 860.3 68 193.1 1196744 114.67 5.99547 13.44 15.3115 79.3 79.1 903. 69 193.1 1196744 114.75 5.99544 2.00 195.7 24.0253 79.3 79.3 840.3 70 68.8 1364282 0.00 5.29954 2.00 173.649 79.3 8493 71 222.7 1798732 0.00 4.56180 4.00 17.3649 79.3 8492 60 1.5 83006 647.67 0.00158 10.97 70.4 709.4 709.4 61 16.5 13.76 0.0976 198.53 705.7 71.9 7209.4 62 23.4 10.9576 198.53 0.09299 7.51 15.5676 77.9 4293.5 63 17.6 647.67 10.660.74 0.10578	'n	65	210.9	1420370	109.77		5.40	21.2205	79.6	708.65
67 343.1 1331426 165.90 5.92547 13.44 15.3115 78.4 860. 68 270.3 1224362 114.75 5.79450 19.57 24.8253 79.1 903. 70 68 1364282 0.00 5.59954 2.00 18.2647 79.6 79.6 71 222.7 137067 652.89 0.00 4.55180 70.9 769. 71 222.7 137067 652.89 0.00 7.561 17.9.6 769. 60 1.5 83006 447.67 0.00778 10.97 70.2 13.5021 75.5 61 16.6 16.6 10.975 7.02 13.5021 75.5 5991. 62 23.8 0.09795 7.61 10.927 7.02 13.5676 77.9 8452. 61 16.6 447.67 0.01602 18.702 73.67 70.9 709.3 62 23.17 65 77.02 13.5696 77.02 13.5696 77.9 7209 63 17.6 <t< td=""><td>ŝ</td><td>66</td><td>314.7</td><td>1021357</td><td>108.24</td><td>.0400</td><td>21-93</td><td>23.0906</td><td>60.3</td><td>757.83</td></t<>	ŝ	66	314.7	1021357	108.24	.0400	21-93	23.0906	60.3	757.83
68 270.3 1224362 114.75 5.79450 19.57 24.8253 79.1 903. 69 193.1 1196744 11.49 5.99914 24.31 20.1182 79.3 839. 71 222.7 1798732 0.00 5.59954 2.00 18.2687 79.6 8452. 70 68.8 137067 652.89 0.00158 17.00 18.2647 79.6 8452. 60 1.5 137067 652.89 0.00158 10.92 20.2362 79.4 705. 61 16.6 10576 523.75 0.09778 7.02 13.5021 75.5 5991. 61 16.6 137.6 223.75 0.09295 7.51 15.5596 77.9 4091. 62 23.4 79.6 18.70 25.5596 77.9 709.3 4991. 63 17.6 24.01 10.02 18.70 7.02 13.5596 77.9 4203. 64 13.6 710.01 0.10602 18.70 77.2 15.55976 77.9 420	ŝ	67	343.1	1331426	165.90	•	13-44	15-3115	78.4	860-58
69 193.1 115.6744 11.49 5.99914 24.31 20.1182 79.3 839. 70 68.8 1364282 0.00 5.29954 2.00 18.2687 79.6 769. 71 222.7 1798732 0.00 4.56180 4.00 17.3649 79.6 769. 59 47.5 137067 652.89 0.008761 5.55 17.1824 79.6 769. 60 1.5 83006 447.67 0.008761 17.3649 78.4 7209. 61 16.6 109576 223.75 0.09778 7.02 13.5021 75.5 5991. 62 23.48 2705 79.18 7.02 13.5021 77.9 4203. 63 17.6 24.910 0.010578 16.67 15.5456 77.9 4203. 64 13.5 4991.67 16.658 14.1619 77.6 3832. 65 13.5 4904.462 480.94 0.11029 16.48 76.9 70.9 65 13.6 14.122 16.48	ŝ	68	270.3	1224362	114.75		19.57	24.0253	1-67	903.61
70 68.8 136.282 0.00 5.29954 2.00 18.2687 79.6 79.6 71 222.7 1798732 0.00 4.56180 4.00 17.3649 79.6 705. 59 47.5 137067 652.87 0.008768 17.3649 79.6 8452. 60 1.5 83006 447.67 0.008778 7.05 17.1824 79.6 8452. 61 16.6 109576 223.75 0.09778 7.02 13.5021 75.5 5991. 62 23.8 275940 198.53 0.09778 7.02 13.5021 75.5 5991. 63 17.6 233.09 0.010578 16.02 13.5 4991. 7203. 64 13.5 4.96110 523.09 0.10578 16.45 17.6 3832. 65 4.0 4.06110 523.09 0.11029 16.58 17.6 7.01 3832. 66 8.3 4.41992 <	ŝ	69	193.1	1196744	11.49	•	24.31	20-1182	79.3	839.81
71 222-7 1798732 0.000 4.56180 4.00 17.3649 78.8 705. 59 47.5 137067 652.89 0.06158 10.97 20.2362 78.4 7209. 61 16.5 137067 652.89 0.06158 10.97 20.2362 78.4 7209. 61 16.5 137067 652.89 0.09295 7.51 15.55 79.3 4991. 62 23.8 225940 198.53 0.09295 7.51 15.566 79.3 4991. 63 17.6 247079 210.40 0.10578 16.70 22.3185 77.9 4203. 65 4.3 0.09578 16.14 16.68501 77.9 4203. 65 4.3 0.10578 16.14 16.68701 77.16 34991. 66 8.3 406410 523.099 0.11029 16.422 15.0428 78.2 3699. 67 8.6 455411 406.74 0.11029 16.422 15.0428 77.16 3599. 68 <	ŝ	20	68•8	1364282	00-00	. 299	2.00	18-2687	79.6	769.82
59 47.5 137067 652.89 0.008767 6.55 17.1824 79.6 8452 60 1.5 83006 447.67 0.00158 10.92 20.2362 78.4 7209 61 16.6 109576 223.75 0.09778 7.02 13.5021 75.5 5991 62 23.4 0.09295 7.51 15.5956 79.3 4991 63 17.6 247079 210.10 0.100578 16.14 16.8501 77.6 3820 64 13.5 459929 470.04 0.10578 16.14 16.8501 77.6 3820 65 4.0 13.5 459929 470.04 0.10578 16.58 14.1619 37.1 3352 65 8.3 404462 480.74 0.010778 1422 15.0428 77.1 3352 66 8.3 40.1072 16.58 14.16199 77.1 3352 65 4.1 0.11029 16.58 14.16199 77.1 3352 66 9.4 0.11029	ŝ	11	222.7	1798732	0.00	-561	4.00	17.3649	78-8	705.67
60 1.5 83006 447.67 0.06158 10.92 20.2362 78.4 7209 61 16.6 109576 223.75 0.09778 7.02 13.5021 75.5 5991 62 23.4 22940 128.53 0.09295 7.51 15.5556 79.3 4991 63 17.6 247079 210.10 0.10602 18.70 25.5556 79.3 4991 64 13.5 459929 470.04 0.10502 18.70 25.5556 79.3 4203 65 4.0 4.006110 523.09 0.10502 18.17 15.55856 77.9 3835 65 4.0 13.5 450.04 0.11078 14.22 15.0428 77.1 3352 66 8.3 404462 480.94 0.11078 14.22 15.0428 77.1 3352 67 8.6 454741 406.74 0.110729 16.58 14.16192 77.1 3352 68 9.4 10.12029 16.58 14.16192 77.2 3088 78.	~ 1	5	47.5	137067	652-89	.087	6.55	17-1824	79.6	452
61 16.6 109576 223.75 0.09778 7.02 13.5021 75.5 5991 62 23.8 275040 198.53 0.09295 7.51 15.5356 77.9 4203 63 17.6 245079 210.10 0.10602 18.70 25.3165 77.9 4203 64 13.5 459729 470.04 0.10518 16.14 16.8501 77.6 3832 65 4.0 406110 523.09 0.01078 16.58 14.1619 77.1 3352 65 8.3 404462 480.94 0.11078 14.22 15.0428 78.2 3583 65 8.3 404462 480.94 0.11078 14.22 15.0428 77.1 3352 66 8.3 404452 480.94 0.11029 16.58 17.1 3352 67 8.41 406.74 0.11029 16.58 17.1 18.275 30.88 68 8.4 14.1029 18.17 18.1192 77.5 30.88 69 8.1	~ -1	60	1.5	83006	447.67		10.92	20.2362	78.4	7209.98
62 23.48 225940 198.53 0.09295 7.51 15.5856 79.3 4991. 63 17.6 247079 210.10 0.10578 16.14 16.6501 77.9 4203. 64 13.5 459729 270.04 0.10578 16.14 16.6501 77.9 4203. 65 4.0 406110 523.09 0.11029 16.58 14.1619 77.1 3352. 66 8.3 404462 480.94 0.11029 16.58 14.1619 77.1 3352. 67 8.6 45741 406.74 0.11029 16.58 14.1619 77.1 3352. 68 8.71 18.07 18.17 18.9704 77.5 3088. 68 8.1 520.18 0.51018 8.71 18.4192 79.3 2745. 69 8.1 18.17 18.1192 77.2 15.2679 79.3 2745. 69 8.1 10.5104 9.564 14.3657 79.3 2745. 745. 70 4.141992 341.46<	~ 1	61	16.6	109576	223.75	•	7.02	13-5021	75.5	166
63 17.6 247079 210.40 0.10602 18.70 22.3185 77.9 4203. 64 13.5 4592929 470.04 0.10578 16.14 16.8501 77.1 332. 65 4.0 406110 523.04 0.11078 14.22 15.0428 78.1 3589. 65 4.0 406110 523.04 0.11078 14.52 15.0428 78.2 3589. 65 8.0 454741 406.74 0.11028 16.58 14.16192 77.1 3359. 67 8.6 454741 406.74 0.112018 8.71 18.0704 77.5 3088. 68 9.2 441992 310.64 0.17290 18.17 18.1192 79.3 2781. 69 8.1 16.107 15.22479 79.3 2745.4 745.4 745.7 2145.7 2145.7 2145.7 2145.7 2145.7 70 4.1 15.64 15.213466 459.13 0.51164 9.56 20.1287 745.7 2745.7 248.7 2537.7	-	62	23.8	225940	198.53	•	7.51	15-5856	79.3	-166
64 13.5 45929 470.04 0.10578 16.14 16.8501 77.6 3832. 65 4.0 406110 523.09 0.11078 14.22 15.0428 78.2 3599. 66 8.3 404462 480.94 0.11029 16.58 14.1619 77.1 3352. 67 8.6 45441 406.74 0.11029 16.58 14.1619 77.1 3352. 68 9.2 441992 310.46 0.17290 18.17 18.1192 79.3 2781. 69 8.1 698517 520.18 0.17290 18.12 15.2679 79.3 2745. 70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537. 71 3.3 1223466 459.13 0.51164 9.56 20.1287 71.6 2489.3	~ 1	63	17.6	247079	210.10	•	18.70	22.3185	77.9	203.
65 4+0 406110 523.09 0.11078 14.22 15.0428 78.2 3599. 66 8-3 404462 490.94 0.11029 16.58 14.1619 77.1 3352. 67 8-6 454741 406.74 0.11029 16.58 14.1619 77.1 3352. 67 8-6 454741 406.74 0.12018 8.71 18.9704 77.5 3088. 68 9-2 441992 310.64 0.17290 18.17 18.1192 79.3 2745. 69 8.1 699517 520.18 0.64033 15.2679 79.0 2745. 70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537. 70 4.7 1242199 459.13 0.51164 9.56 20.1287 77.6 2489.	~ 1	49	13.5	5992	2	2.	7	16.8501	77.6	Å
66 8-3 404462 480-94 0.11029 16.58 14.1619 77.1 3352.5 67 8-6 454741 406.74 0.12018 8.71 18.9704 77.5 3088.7 68 9-2 441992 310.64 0.17290 18.17 18.1102 79.3 2781.6 69 8-1 698517 570.18 0.680655 15.72 15.2679 79.3 2745.4 70 4-1 1242199 341.46 0.61033 5.64 14.3655 78.7 2537.8 70 4-1 1242199 341.46 0.61033 5.64 20.1207 77.6 2489.4 71 3-3 1223466 459.13 0.51164 9.56 20.1207 77.6 2489.4	~	65	0**	406110	m.	Ξ.	ş	15.0428	78.2	ď,
67 8.6 454741 406.74 0.12018 8.71 18.9704 77.5 3088.7 68 9.2 441992 310.64 0.17290 18.17 18.1192 79.3 2781.6 69 8.1 698517 520.18 0.68065 15.72 15.2679 79.0 2745.4 70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537.8 71 3.3 1223466 459.13 0.51164 9.56 20.1287 77.6 2489.4	~	66		404462	80-	Ξ.		14-1619	77.1	5.
68 9.2 441992 310.64 0.17290 18.17 18.1192 79.3 2781.6 69 8.1 698517 520.18 0.68065 15.72 15.2679 79.0 2745.4 70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537.8 71 3.3 1223466 459.13 0.51164 9.56 20.1287 77.6 2489.4	~	67		454741		2	•	18.9704	77.5	3.7
69 8.1 698517 520.18 0.68065 15.72 15.2679 79.0 2745.4 70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537.8 71 3.3 1223466 459.13 0.51164 9.56 20.1287 77.6 2489.4	►	68	9-2	441992	310.64	.17	•	18.1192	79.3	1.6
70 4.7 1242199 341.46 0.61033 5.64 14.3655 78.7 2537.8 71 3.3 1223466 459.13 0.51164 9.56 20.1287 77.6 2489.4	~ 1	69	8.1	9851	•	•68	r.	15.2679	79.0	4.5
71 3.3 1223466 459.13 D.51164 9.56 20.1287 77.6 2489.	~ '	2	4.7	4219		-61	•	365		
	~	71	е, •	2	÷	5	ŝ	-128		4

LOC	YR	۲	۲ ₂	×	۲4	۲,	x ₂	×3	×4
α	50	1.46	45188	64-26	0.28321	25.99		78.5	4
• •	. 9		75345	73.51	0.31989	15-20	3.1580	7-75	164.91
	37	43.5	75152	6.3	0.23545	12.53	1-1144	75.8	188.27
.	53	67.1	79370	- etc	0.29083	2.05	0.0160	78.5	374-08
	4 (* 5 - 4		181576	66.95	77672.0	13.03	0.110	1.8.1	66-
, a		16.9	168776	50.38	0.32304	12.64	0-0160	76.9	343.36
	5 4	20.1	7360	84.69	- t	12.23	0.0150	76.8	359.38
	33	1.00	239298	68.11	- 54	3.05	0.0190	76.7	355.62
0 a	35		• •	89.12	2679	16.92	0410*0	75-1	373-61
) a	- 9 - 4	~~~~	195588	108.08	0.30374	9*65	0*0140	17.6	406-97
o a	00	13.7	139443	167-19	0.27890	23.36	0-0190	17.6	492.77
0 9	56	14.7	383225	37.55	0.58593	22.28	0.0700	19.4	431.77
a	2	21.0		27.85	•	4.45	0.0190	78.2	373.27
<u>،</u>	. U		01077	43.418	2-12230	33.56	19.9590	78.5	43-42
20		116.0	14041	00.4		0.0	17.9671	77.4	38.74
	35	45°0	96547	20.931	1-58559	6.41	12.9681	76-6	51-92
	-	9.64	138570	36.134	1	6.18	12.9523	78.8	77.67
			132122	28.621	2.09307	21.52	15.9314	77.8	90.76
	34	103.5	110934	000.0	0.98800	22-86	16.9417	77.2	72.61
		29-62	93673	0.000	2.03225	28.80	16.9534	77.4	58.09
22) - C	51-9	98861	0.000	L+72857	25.05	14-9671	77.1	46.47
2	1 2	5	126206	61.62 l	1.68628	14.09	18.9114	75.9	98-80
22	8.9	14.9	134061	7.644	1.55380	12.04	11.9509	78.2	86.68
	2	1.12	115637	16.552	1.52108	20.09	18.9229	78.0	85.90
	52	21.3	88728	0.000	1-50510	18.90	12.9578	79.2	68.72
	: =	6-16	132606	0000	1.34409	2.53	15.9585	78.6	54.97
22	5	70-7	801166	817.935	0.37819	11.80	9.4265	81.0	8817.93
:=	3	0-09	771784	420.126	0.34210	22.63	9.3710	78.4	8503.23
:=	53	6.68	809990	494-372	0.41462	2.27	48194		8289.00
:=	3	61.3	1612369	398.716	01666.0	4.06	10.0038	79.5	7996.97
:=) (30.9	1116270	257.276	0-41404	3.78	11.5667		7587.83
::	14	100.2	1381823	176.284	•	7.59	9.4225		►.
:-	r (c 3 - 4	40.4	11 70767	169.111	0.50704	2.29	12.1976	÷.	å
:-	34	25-6	901676	240.525	0.55622	6.71	9.0110		6388.23
:=	12	61.0	945934	300.824	0.54831	11.05	9_8433		6156.70
:=	69	47.6	122	109.762	.4453	넊	10.2466	78.6	٠.
11	69	24.6	L307698	47.506	0.47475	¢,	16.0178	80.3	99-1225
:=	20	13.4	469666	170-605	.4134	4.28	13.6892	79-7	•
•	•								

Continued
•
-
Part
ณ์
Ð
- -
able
Table
×
×
×
×

_

-	ΥR	۲'	۲2	۲ ₃	۲4	۲۱	x ₂	×3	×4
12	59	0.69	398158		6.83611	11.84	15.7210	80.1	1242.57
2	9	57.6	450103	41.226	÷	7.30	L3.0335	78.6	1679.91
12	19	33.4	398844	95.693	å	3.80	12.6547	79.1	2404.53
2	62	50.0	471221	385 322	8.1	61.9	11.1675	79.8	3371.14
2	63	36.3	313230	327.081		16.83	8.6150	79.6	3754.01
2	64	50.0	392377	178.115	6 •9	7.14	8.2010	78.8	4516-04
2	65	31.1	493857	109.330	7.75686	12.30	6.8956	79.4	4946.53
2	66	25+6	402651	50.364	6.88435	24.58	5.5504	17.9	
ŝ,	67	23.5	303886	195.375	3.62521	00.0	4.5062	79.3	5291.50
N	68	10.8	349597	74.203	2.61437	9.57	5-1025	79.6	5266.42
~	69	12.2	243709	32.969	2.54026	00*0	6.6594	79.6	5202.18
N	2	10-9	294267	35.517	3.20363	7.17	5.7060	76.7	5145.85
N	1	17.4	430347	26.571	2.75310	14.21	6.1680	79.5	5085.27
ņ	59	367.7	1331592	506.153	4.91638	13.60	16.6746	80.7	1646.15
0	60	371.9	1397822	738.184	4.18881	11.13	21.4251	79.9	2247.16
m.	19	238.6	1117949	952.820	5.29411	13.88	23.1592	80.9	3012.71
ņ	62	411.7	2504825	942.989	4.51229	12.77	22.0092	81.4	3704.64
ņ	69	254.3	1650136	833.068	5.63034	3.41	19.9673	80.9	4229.01
m	64	364.9	2157984	570.011	4-51524	2.78	15.1727	80.2	4446.61
5	65	260.7	2438816	656.180	5.71456	11.08	18.8995	1-61	4732.23
m	66	193.8	1414978	604.851	5.41014	4.49	21.6781	80.7	4942.73
m.	67	248.9	1890409	527-743	6.01782	8.66	18.8236	80.5	5058.58
m.	8 9	95.2	715429	466-625	5.60037	22.77	18-8131	80.3	5103.66
en.	69	81.9	917867	465-345	6.13742	25-23	25.3851	80.7	5143.70
-	70	120.7	726560	386.992	5.11536	9.85	15.0508	80.2	5102.05
m	11	232.6	1608506	475.383	5.66369	4.58	18.8018	80.0	5152-26
÷	59	12.9	72000	39.755	0.79277	21.18	18.9956	78-8	39.75
4	60	13.3	49309	63.690	0.85352	16.05	19.9884	79.9	100.13
4	61	14.2	54788	13.989	0.89759	7.51	-990	79.8	105.78
4	62	12.0	105455	49.230	0.87523	5.19	18.9839	80.6	146.19
4	63	7.8	88243	38.065	1.12471	04-6	1186-91	79.7	172.07
4	4 9	16.3	129358	17.912	1-09621	20.60	13.9858	78.8	175-65
4	65	36.4	123491	43.218	- t -	12.91	12.9846	79.3	204-23
4	66	12.1	170716	2	1.12830	6.74	14.9814	80.0	213.92
÷	67	10-3	129940	37.678	1.00325	9.79	15.9784	77.2	2
4	68	4.7	97067	31.356	1.13783	11.54	17.9744	78.9	245.64
4	69	4.4	121213	24.080	1.12679	11.22	16.9755	78.9	249.25
4	2	7.4	122958	36.904	0.85083	12.87	11.9916	80.6	265.39
	į	•							

LOC	ΥR	×	Y2	۲3	۲. ۲	۲×	xz	×3	×4
15	59	106.8	447225	522.406	0.64812	13.74	19.4651	79.3	671-41
15	60	115.3	298764	501.149	0.96068	26.45	20.2042	78.7	1116.61
15	61	162.2	408001	445.153	0.72429	7.65	20.1627	78.7	1468.71
15	62	135.8	386668	265.326	0.91839	4.47	16.4911	19.0	1611.64
12	63	29.3	410425	285.268	0.91689	8.71	15.3543	78.9	1762.61
15	49	34*5	495274	296.839	0.95073	3.75	12.6687	78.1	1912.56
13	65	78.7	511032	286.475	0.75932	8.47	14.7912	4-11	2039.66
15	66	61.2	477529	251.092	1.45416	7.71	16.1517	78.5	2120.78
51	67	109.9	415226	291.207	1.02702	14.68	15.8900	77.8	2235.25
12	58	51.6	4213d3	610.90	1.03563	18.70	17.6719	78.9	2147.95
15	69	26.0	227242	165.238	0.91026	28.84	19.1917	80.7	2134.20
12	70	41.9	198585	59.625	1.05330	13.43	15.6108	80.0	2015-97
51	11	29.0	151681	45.272	0.93175	15.77	15.0841	78.5	1893.25
16	50	243.9	118642	242.375	1.24267	12.44	18.1655	80.4	742.38
16	60	174.7	61624	39.540	0.99929	17.75	18.1614	79.9	1157-05
16	91	57.7	9212	106.284	1.48077	11.41	10.1023	79.8	2027.33
16	62	154.0	97551	001-69	1.08321	6.71	9.77.9	80.3	2669.57
16	63	11.7	70157	110+728	1.14420	15.26	9.9680	7.97	3008-00
16	64	91.4	135322	135.460	1.12724	13.02	11.0214	79.6	3075.29
16	65	88 . 8	78934	163.050	1.24862	00.00	6.3694	79.3	3164.57
16	66	83.7	79806	80.881	1-00263	13.37	7.8325	79.2	3218.24
16	67	41.6	203311	88.149	1.18362	5.08	7.1956	79.4	3521.20
16	68	69-0	153843	51.149	1 . 94393	10.13	8.6418	79.3	3519.58
16	69	34.0	138231	27.471	2.88164	5.50	7.7621	80.0	3643.84
16	70	64.6	226540	175.096	2.62896	6.99	5.7532	78.7	3917.87
16	11	104.5	04701E	66.245	2.32336	7-47	5.7351	78.7	4066.21
17	59	794.0	386619	000*0	1.77045	7.54	16.0000	79-0	0.00
17	60	552.2	278643	0.000	1.89245	13.59	19-0000	82.4	0.00
17	61	375.4	638638	209°92	2.29726	3.30	13.9160	82.6	209.99
17	62	478.3	589189	00000	2.42701	3.37	13.9230	82.5	192.49
17	63	264.1	579832	00000	4.13988	16.09	13.9294	82.5	176-45
17	64	95.2	991837	0.000	4.23408	00.0	11.9445	82.4	161.75
17	69	32.3	1281276	0.000	5.09420	00.0	14.9365	83.2	148.27
17	66	32 . 3	1194350	608.831	5.13160	12.68	22.5106	81.7	744.74
17	67	56.1	1326953	513.506	5.42027	2.25	17.3848	82.7	1196.19
17	68	12.8	1393290	186.333	6.02325	12.03	25.0470	82.0	1282.84
17	69	10+2	1456662	96.582	6.44374	25.86	19.2728	82.8	1272.52
17	20	28.8	1261068	123.579	6.02252	15.53	15.4103	81.8	1290.05
17	11	67.0	1544817	210-63	7.45892	9.25	20.1641	82.3	1393.18
I			I						

inued
Cont
ι
-
Part
5
Ð
Table
×
Ð
Append

LOC	ΥR	۲ ,	≺2	۲ ₃	*† ≻	×	x ₂	×3	۲ ^۲
	59	30-6	011941	123.64	3.74746	8.99	13.7148	1.97	1523.64
80	60	14 . 8	203200	151-23	3.38584	13.48	18-8520	77.3	1370.14
\$	61	8.7	118933	0.00	3.55331	2.82	13.2597	77.0	1096.11
8	62	11.4	178230	192.54	3.24575	10.48	16.6580	78.5	I069-43
80	63	0.6	145406	201.36	3.57347	10.56	16.6972	1.91	10-9501
æ	44	22-6	180413	16.94	3.37367	16.77	11411	1.11	914.84
8	65	15.5	56194	70.59	3.50954	3.44	17.4923	76.5	802.46
ŝ	66	10.2	61977	195.55	3.62583	5.42	15.6445	76.5	837+52
æ	67	5.2	69043	131.45	4-03664	11.26	15.7459	75.8	801.47
80	68	7.9	101043	98-87	5.10389	25.84	14.1499	77.5	740.04
80	69	17.1	85625	158.95	3.64260	14.22	Z1.1838	76.5	750.98
80	70	16.2	89164	96.87	3.23367	7.56	12.4739	1.9.1	697.66
œ	71	9-6	83976	162-04	3.48566	00.0	16.8620	78.2	720.17
æ	59	82.3	233164	263.28	0.47959	20.15	7.8060	78.4	1463.28
r.	60	76.8	178764	370.64	0.44156	15.37	6.8802	77.2	1711.98
œ.	61	59.8	131588	447.07	0.42175	4.65	2.8771	77.4	2016-38
÷	62	186.2	80827	376.85	0.47060	15.88	1.4567	78.7	2225+20
б	63	40-0	81321	270.43	0.45423	17.24	0.7484	78.2	2310-19
ው	64	40-8	87521	260.54	0.47755	5.09	0.1906	76.5	2378-22
m	65	48.7	93722	254.00	0.57142	12.77	0-0220	4.11	2434-04
σ	66	29.0	168776	357.26	0.43586	15.69	0.0240	79.0	2588.46
~	67	42.8	123346	288.92	0.50313	3.23	0.0230	77.8	2661-67
~	68	30-1	184594	452-34	0.30637	16.39	0.0230	78.3	2892.21
6	69	14.2	137776	444.79	0.38492	8.36	0-0260	1.91	3095.98
¢.	70	8.2	84143	196-51	0.31847	6.12	0.0250	78.6	3034+50
¢	71	27.3	103176	105.34	0.38384	7.42	0-0230	78.3	2886.97
_	59	50.9	664005	1674.73		18.87	5.8601	79.5	4674.73
_	9	38.0	909578	1979.79	0.35702	13.35	0-0705	78.6	6264.95
_	61	35.4	1050234	779-00	0.44276	8.25	0.0190	78.7	6521.88
_	62	33.6	1880636	944*96	0.68159	23.30	0120-0	79.2	6923-36
_	63	7.8	4145468	856-46	0.48700	6-50	0.0150	79.2	7202.87
_	64	18.8	1605144	787.66	0.38312	12,35	0.0170	78.5	7390.30
_	65	6*9	1235834	614.95	0.38558	6 44	0.0700	7.87	7449.39
_	66	9°6	825409	493.54	0.45063	6 = 44	0.0180	79.2	7322.15
_	67	6.2	665576	573.84	0.44010	10.80	0.0150	78.6	7285.01
_	68	1-7	882465	716.08	0.42284	12.74	0.0190	79.2	7394.74
21	69	4 • 4	1074519	717.69	0.44691	6+43	0.0740	80.0	7496.20
-	70		968591	515.79	0.47087	3.02	0-0230	79.6	7387.30
	;	•							1

Appendix Table 2, Part 1 - Continued

Cont i nued
Part
5
Table
AppendIx

× ^t	224-25	231.91	242.68	318.44	443.06	389.26	398.83	463.94	613.73	630.68	702.78	739.73	861.72	2000-00	2832.00	3438-00	4284.05	4733.68	5667.77	6037-65	6179.20	6223.67	6214.43	6178.42	6240.73	6196.59	0.00	0.00	0.00	0.00	00-0	0.00	39.47	78.89	93.38	88.23	80.23	77.79	79.41
x ₃		77-3 2	77.1					1.11			78.3			س	~		m	<u>م</u>			79.1 6	م		~	-	-	78.6	76.2	74.5	77.6	76.9	75.8	75.7	75.0	74.3	75.7	77.0	78.7	74.7
x ₂	20.9459	19.9594	14.2222	17.2651		17.1017	18.9774		_		20.9277	16.2929		14.0000	11.0980	7.2590	6-8638	4.8542	1.1628	0.0150	0.0200	0.0210	0.0710	0.0240	0.0180	0.0730	Z1.0000	25.0000	24.0000	13.0000	14.0000	18-0000	10.2501	17.5011	19.0390	16.4119	20.2349	15.6776	18.4117 1
۲ ^۲	4.60	3.85	10.75	12.99	19.63	23.65	00.00	10.15	6.18	13.12	8.24	00.0	3.97	23.95	12.43	8.38	7.38	14.00	14.13	00.0	11.51	2.26	6.77	13.39	12.29	3.31	14.78	18.00	12.87	6.0 0	9.02	6.95	7.07	00-0	14.84	00.0	15.27	29.16	6 1 3
۲ ^۴	1.28152	1.10682	1.90402	2.73528	2.56944	2.45144	2.86577	2.72840	2.45626	2.64635	2.89247	3.23188	3.55190	2.39557	2.04450	2.08976	2.39710	2.31085	2.17370	2.37014	2.32254	2.34801	11967.1	1.80659	1+75260	1.62608	0.26819	0.37856	0.34126	0.34749	0.46863	0.83729	0.79085	1.05770	1.05073	0.98182	1.04992	l.13323	1 01101
÷.	212.25	52+52	57.15	124.30	186.31	34.81	87.42	144.88	242.58	139.89	198.08	177.50	269.93	00"0	000	0.00	17.05	51.05	106.65	172.85	168.77	83.49	33.49	5.94	101-26	00-00	0.00	00-00	00*0	0.00	0.00	00-00	39.47	47.12	30.27	13+52	9.65	13.60	
≺2	231612	104436	143142	371444	337407	363541	172025	177649	259589	266037	280680	160728	212898	404946	316800	396551	670402	539238	557626	498474	408632	512689	464341	476365	497214	882863	147733	60606	150609	153898	157188	141722	146085	114425	222546	258910	304049	15235	
Ľ	40+2	52.8	31.7	41.7	25.2	30.5	20-8	20.7	29.4	8.4	11.0	1.8	10.4	213.7	105.6	55.3	257.5	112.8	97.6	6*111	4-16	40.6	121.2	41.5	28.5	73.4	15.4	1.1	17.1	13.4	13.2	13.2	20.3	10.7	11-2	4	6.4	2.6	•
ΥR	59	60	61	62	63	44	65	99	67	68	69	10	71	5.9	60	61	62	63	44	6 5	66	67	68	69	10	71	65	60	61	62	63	64	65	66	67	68	69	10	
LOC	22	22	22	22	22	22	22	22	52	22	22	22	22	23	23	2	53	53	23	23	23	23	23	23	23	23	24	24	24	24	24	54	24	24	24	24	24	74	

LOC	ΥR	۲	۲ ₂	۲ ₃	۲ ⁴	۲,	X ₂	×3	x ₄
25	59	62-8	192207	835-91	0.70520	21.16	1.4	80.4	2835.9
	60	107-8	252141	792.47	5	29.27	3.0397	78.4	3392.06
	61	79.7	217186	863.34	0.97473	3.71	0.1364	- 60	•
	62	94.2	350546	840-11	5	18.74	0.0170	60.1	4481.78
	63	49.3	240291	1200.27	•	7.69	0.0200	79.5	5308.5
	64	46.9	315152	1168.08	7	5.01	0120*0	19.1	6034.2
	65	43-6	385698	1073.31		15.57	0.0160	79-6	6604.7
	66	23-8	420365	819.75		5.68	0.0210	79.3	6874.09
	67	59.8	487136	682.57	0.41575	17.76	0110	78.2	6983-82
	68	35.6	428365	719.12	0.50120	13.35	0.0210	78.7	7120-95
	69	33.3	371638	614.89		4.18	0*0550	80.1	7142.42
	2	51.2	374789	571.28	0.39558	7.56	0.0160	79.7	7118.50
25	11	151.9	492365	171.74	0.50094	12,31	0.0170	79.2	6697.0
	59	71.1	311719	568-87	1.33072	8.24	14.8966	80.2	1068.87
	60	23.2	253182	772-60	1.22732	9 • 39	17.7388	77.4	1752.41
	61	34.7	278964	856.59	1.51028	5 +09	12.6165	77.9	2462.96
	62	73.1	381095	674-29	1.67066	14.47	17.0276	79.0	2932.0
	63	15.8	320525	681.69	1.44182	4.00	14.8698	7.8.7	3369.36
	64	20.1	569524	661-53	1.40230	17.95	11.3709	77.7	3750.1
	65	21.4	606992	522.54	1.53915	4.22	11.9121	76.5	3960-
	66	26-6	554024	330,85	I.57368	7.85	13.7903	78.3	4250.0
	67	21.2	395675	439.68	1-5453L	6.41	11.6296	75.7	4896.
	68	13.4	354862	443.58	1.43162	16.32	12.4947	77.9	5306
	69	19.3	296536	452.31	1-52436	8.81	12.1412	79.2	5595
	70	6-6	324106	87.8	1.02756	0.00	10.6622	81.0	5778.
	71	36.2	657021	526.91	1.86235	10.19	10.3280	78.2	6083.
	50	304.7	87757	00-0	0.42207	10.82	22-0000	78.7	0
	60	131.4	109576	00-0	0.41418	10*6	27.0000	77.9	0
	61	124.6	75644	00*0	0.49730	4.20	17-0000	76.3	•••
	62	209.2	70934	00*0	0.37839	4.46	20.0000	78.8	•
	63	441.3	66909	00*0	0-60455	24.89	15.0000	76.2	0.0
	\$	185.7	61915	00*0	38	٠	16-0000	74.7	0.0
	65	121.2	154764	00*0	-0875	en -	17.0000	74.6	õ
	66	80.4	242570	0.00	٩.	٩	16+0000	74.3	0.0
	67	92.0	217261	0.0	+656	L8.19	23 - D000	73.5	-0
	68	83.8	239419	ഹ	3.74677	4-84		75.9	153.1
	69	-	225261	158.07	3.22090	7-54	- 204	75.8	280-6
	70		202618	276-02	2+86542	15.69	15.9963	76.5	500*
	Ē	<		•	ļ				

29 29 29 29 53 60 53 61 60 62 53	۳ ۲	۲ ₂	۲3	* * *	×,	×2	x3	4 t
	0 41	511862	137.80	0.48022	23.36	20.5357		332.8
		00000	539-08	0.49058	10.03	18.2858	76.3	844.1
	• •	94551	685.26	0.57458	5 • 00	10.6228	75.5	1459.1
			501-07	0.51584	7.83	11.6735	76.7	1938.5
	2.4	100000	D9 271	0.55914	10.32	10.8710	75.7	2540.7
	-	070401		0 40701	79.67	9.9650	76.0	3083.7
		1/6360				4.8RB7	75.6	3713.5
	65 9.7	127549	600.01			3.7566	1-51	4234.3
		L77762	12+068	0.700.0			14.5	5052.3
	67 13.3	277133	1170.90	C10/C*0	2.10			9-0095
		189758	969.29	0.67225	00.0	0-0100		
		286063	690.42	0.64734	23.07	0-0700	10.2	
		140085	1000-65	0.75595	11.37	0.0220	77-3	6339.0
		20000	204 A4	0_82641	19.27	0+0230	17.3	6708.1
•		700016			7,19	4611.0	71.2	24433.2
31 5	~	444830	4433-2			11 4171	68-6	22988-2
	60 9.7	327797	1609.2	0.0000	21+11			21478-
		144588	1364.0	0.0000				0 70700
1.4	62 8.1	163687	1812.9	000000	1 • 39	9-8-60		
		211442	5774.9	0.0000.0	1.48	8958*6	2.0	
	-	287005	3085-6	0.0000	4.17	6-5935	68.3	23915-
		450000	6192-6	0.0000	1.21	8.5762	24.5	27118-9
			0.141	0.0000	7.09	9.1144	68.3	32470-0
31	99 99	C 1 7 C 4 1		0.0000	15.61	6.8160	67.0	33690-6
	-	240415			00.0	8.2619	69.1	33854.
31 6		200112	1+0164			8.00A8	6.9.9	32634.
	69 19.8	239357	90124			1 900 1	0.04	31187.1
31	70 6-6	73459	2631.5	0.0000			4 8 4	0.94548.0
	71 7.8	133050	2259-3	0.00000	14.37	104-01		07701
	*-	573109	2449.4	2.22255	8.9.8	6-3516		• • • • • •
		747478	1667.7	2.48927	11.64	7.5379	64.9	
		718401	2463-6	2.46109	2.86	8.2839	69.0	18048.2
			2 7062	7.97936	00-0	5.2819	68.7	18998.3
		CC4CT0		•	00.0	4.8076	68.2	21743.9
	63 62.7	104510	C-N716	1400/*7		1 0670	6.8.6	25705
	64 349.1	420360	6679.	20200			104	30731.1
	65 154.3	652167	8238.7	3.00799	10.0			26323
	-		8332.5	3.21323	5.10	0-0100		
	•		4016+5	3.16211	16.45	0.0160	2.00	
	-	14	7215.8	3.80639	00.0	0.0140	70.1	3 (44 (
2		•	6788.3	3-52367	2 30	0.0160	67.1	39273.4
		n -	1.9671		2.24	0.0180	66.8	36061.0
32	5*FE 07			•	10	0.0150	68.1	32827.

Appendix Table 2, Part } - Continued

.

.

LDC YR	, - , - , -	۲ ₂	۲ ع	۲Ļ	×	×z	×	* ×
5	9 13.5	118753	577.4	0-17478	6.14	14-0099	69-8	5577.4
99	-	191508	445-0	0-22845	14.98	18.7396	66.4	5325.2
9	-	160914	325.2	0.27922	5.15	18.8202	68.0	4984.7
62		192286	943.9	0.21428	2.18	15.0995	65.7	4755.6
9		144529	445.9	0.24259	00*0	13.2367	66.4	4607.1
9	-	94224	715.7	0.18289	5.45	11.3259	67.4	4746.9
65		149226	660-0	0.17191	2.78	14.1455	67.0	4813.5
ç	5 10.0	148977	513.3	0-19696	7.40	15.1053	66.8	4725.1
ō		132969	552-8	0.18137	4.45	23.6132	65.7	4687.3
69	9 11.9	96800	380.2	0-19621	7.54	15.1514	66.2	4481.5
ð		155972	471.0	0.17286	5.90	18.9604	66.9	4392.3
ž	7-6 0	92881	414.7	0.20707	2.19	10.4457	67.2	4258.0
~	1 11-8	41547	377.8	0.20410	11.73	18.0773	66-5	4103.5
ň	-1	903567	4835.0	0.78075	7.65	2.7547	69.8	24835.0
61		969077	5249.1	0.75501	7.84	1.9129	66-0	26979.6
61		1036122	5325.8	0.74487	4.31	0.6758	68.3	28932.9
62		537927	5050.8	0.92220	5.88	0.0150	65.7	30367.1
63		639506	6156-8	0.77412	00-0	0.0130	65.7	32720.1
6 4	4 12.6	640753	3127.4	0.90187	4.90	0.0140	66.5	31764.5
65		427603	7582.8	0.69852	2.65	0.0150	65.5	35376.7
66		529936	4815-9	0.80785	7.75	0610-0	E.46	35770.5
67	7 13.5	558936	12147-4	0.82953	4.37	0.0170	64.2	43446-6
68		552805	11853.3	0.69395	9.51	0.0160	66.0	49869.0
69		450499	11219.9	0.76221	6.65	0.0190	67.0	54855.2
ž	-	472082	16655.0	0.92851	2.02	0.01700	68.1	64653.3
11		456021	8774.4	0.01883	11.48	0.01600	67.1	65346.0
59		140437	20-7	1.23008	14.52	4-09543	74.5	470-7
69	-	166478	25-5	0.92221	8.30	5.15204	73.6	6.764
Ŷ		147749	32.4	0.95258	11.86	7.08971	73.2	415.1
62	2 18-9	186089	7.8	1.02063	9.24	7.63585	73.5	370.9
Q		189977	28.3	0.94356	12.60	6.59128	72.4	352.8
Ó		153569	16.3	1.17826	18.22	6.24967	72.4	325.0
-0		402721	56.5	1.26844	00*0	6.04643	71.5	340.9
Ō	-	401898	63.1	1,28041	3.70	6-36428	69.5	361.3
9	7 7.9	381721	58.9	1.18627	8.97	5+62348	67.8	375.1
÷0	7	247457	47.7	1.04069	2.31	5-22841	74.4	375.9
9	69 9.8	183867	24.9	1.01279	5.18	5.74465	73.7	353.8
~		398943	128.8	1.15486	5.06	4.31017	74.0	438.4

70

71

.

Appendix Table 2: Individual Mosquito Data, Part 2

Appendix Table 2, Part 2 - Continued

Арреі	ngix (a	bie E. mert											
LOC	YR	× ₆	× ₇	×8	×9	w ^B	N	LOC	ΥR	× ₆	×7	×g	×9
1	59	53.012	4862.87	L+55659	.0075198	1.54078	7008 Z	5	59	112.525	3166-67	1.98842	.0265126
ī	60	86.762	5169.65	1.61960	.0042982	1.56621	114700	5	60	135.000	3271.87	3.69778	-0234568
ī	61	97.050	5504.76	1.21837	.0035698	1.59389	128300	5	61	150.833	3395.77	2.86381	.0221547
ī	62	107.337	5799.58	0.71424	.0029810	1.61827	141900	5	62	166.667	3494.73	2.35671	.0211500
ī	63	117.852	5971.43	0.69061	.0038511	1.61688	155800	5	63	182.500	3630.69	2.11078	-0194521
ī	64	128.139	6110.88	0.87355	.0045809	1.61241	169400	5	64	198.333	3748.68	2.64823	0180252
ī	65	138.275	6307.45	0.79312	.0052790	1.68861	182800	5	65	214.167	3716.36	3.12571	.0278988
ĩ	66	151.015	6962.93	0.48370	-0051669	1.68045	200700	5	66	232.500	3720.44	2.66691	.0226523
ī	67	167.776	6980.00	0.54941	. 0040667	1.73218	221800	5	67	250.833	4032.00	2,91309	.0247176
ī	68	173.979	7411.71	0.59947	. 0040652	1.79059	230000	5	68	272.500	4172.68	2.50286	.0244037
ī	69	177.307	7769.01	0.52619	.0039633	1.80350	234400	5	69	291.667	4520.19	3.07951	.0262286
ī	70	173.983	7134.96	0.69413	.0047651	1.71378	230006	5	70	317.000	4784.42	3.58924	.0246320
i	71	178.082	6789.75	0.67112	.0036105	1.67835	235424	ŝ	\overline{n}	344.067	4815.37	3.70352	.0213621
2	59	195.386	3586.50	0.14106	.0167958	1.47165	234463	7	59	534.995	3760.55	0.07455	.0046564
2	60	283.583	3689.15	0.16891	+0130885	1,50961	340300	ż	60	540.968	3922.02	0.08781	.0044064
2	61	305.583	3810.58	0.13770	.0135533	1.55132	366700	7	61	552.066	4105.82	0.09311	.0041210
2	62	326.917	3905.06	0.12511	.0139842	1.58592	392300	ż	62	567.769	4259.49	0.06892	.0038158
z	63	347.167	4105.82	0.13076	.0141167	1.61330	416600	i	63	581.228	4456.08	0.08295	.0037294
2	64	368.167	4284.05	0.10325	.0142055	1.63564	441800	7	64	592,208	4629.36	0.10719	.0036603
2	65	389.333	4265.01	0.10921	.0151027	1.64125	467200	ż	65	600.826	4539.34	0.14272	.0039536
2	66	414.667	4288.58	0.08673	.0156531	1.63839	497600	7	66	607.438	4640.28	0.14703	.0041458
ž	67	438.917	4504.00	0.07627	.0139909	1.70023	526700	ż	67	615.939	4954.00	0.14694	.0041921
2	68	474.083	4768.78	0.08102	.0138777	1.74848	568900	7	68	623.849	5031.22	0.13883	.0050341
ž	69	496.333	4950.23	0.08081	.0138969	1.75238	595600	7	69	623.967	5168.08	0.18099	.0041760
2	70	516.750	5315.22	0.10850	.0135688	1.82111	620100	7	70	624.398	5252.72	0.26899	.0047574
2	71	560.672	5363.07	0.10547	.0115368	1.94824	672806	7	n	634.785	5507.07	0.28741	.0050087
3	59	14.401	3132.91	2.32809	.0023638	1.16820	10153	8	59	250.239	3876.58	0.24064	.0022505
3	60	18.582	3328.77	1.97379	. 0033588	1,20417	13100	ě	60	266.210	4025.29	0.24263	.0022699
3	61	20.851	3542-86	2.10654	-0043537	1.24061	14700	8	61	273.059	4195.77	0.19606	.0023634
3	62	23.830	3732.07	1.95047	.0050000	1.27213	16800	Ā	62	278.691	4336.50	0.21584	.0024631
3	63	26.383	3751+32	1.90419	.0044086	1.27358	18600	â	63	283.866	4508.99	0.17303	.0023753
3	64	28.936	3751.85	2.32054	.0038725	1.77261	20400	ě	64	290.715	4656-81	0.16637	.0022723
3	65	30.922	3782.61	1.49235	.0036239	1.30417	21800	8	65	295.890	4687.37	0.24435	.0023045
3	66	32.624	3724.45	1.23029	.0038261	1.19841	23000	8	66	300.304	4566.13	0.22226	.0023568
3	67	33.475	3894.00	1.06945	.0031780	1.24791	23600	8	67	299.087	5051.00	0.16383	.0022188
3	68	35.887	3994.15	1.28526	.0066798	1.21981	25300	8	68	301.826	4900.49	0.16827	.0024861
3	69	37.163	4268.54	1.99674	.0045420	1.27250	26200	Ř	69	310.959	4973.71	0.14575	.0028488
3	70	39.091	4156.70	1.88341	.0051526	1.17551	27559	Â	70	312.533	5205.62	0.30288	-0028734
3	71	43.687	4517.67	1.22673	.0065262	1.76608	30799	ě	71	320.685	5221.73	0.12622	.0025013
4	59	12.925	2537.97	3.58775	.0097850	1.04488	8789	10	59	7.793	1824.89	3.29560	.0104474
4	60	13.824	2640+67	4.52481	.0101064	1.05598	9400	10	60	11.681	1877.77	2.47219	.0066667
4	61	15.147	2758.73	4.97950	.0100971	1.07028	10300	10	61	12.035	1940.74	2.34532	.0060294
4	62	16.765	2856.54	4.31684	.0099123	1.08214	11400	10	62	12.389	1990.51	2.72257	.0054286
4	63	18.382	3049.74	3.32825	.0116800	1.10127	12500	10	63	12.566	2226.46	2.92749	.0047887
4	64	19.853	3227.03	3.24291	-0131852	1.11809	13500	10	64	12.920	2451-95	2.82540	.0039726
4	65	21.471	3000.00	2.65386	.0145205	1+11629	14600	10	65	12.920	2404.76	3.81912	.0041096
4	66	24-265	3038.08	2.05860	.0135758	1.18381	16500	10	66	13.097	2220.44	3.02565	.0027027
4	67	24.559	3765.00	2.28479	+0082635	1.21371	16700	10	67	12.743	2174.00	3.15178	.0027778
4	68	25.588	3679.02	2.18424	. 0095977	1.11776	17400	10	68	12.566	2535.61	2.75804	.0028169
4	69	27.206	3749.30	2.19525	.0096757	1.10364	18500	10	69	12.566	2450.70	2.23381	.0039437
4	70	28.229	3914.86	2.48193	.0099500	1.19062	19196	10	70	12.504	2519.02	2.36658	.0028309
4	71	32.653	5034.45	2.22563	.0083769	1.12450	22204	10	71	12.697	2485.87	2.37192	.0027878

73

wB

1.11104

1.12330

1.13730

1.14798

1.15851

1.16650

1.10062

1.12557

1+14292

1.18995

1.16968 1.20687

1.20647

1.37688

1-40907

1.44701

1.47601

1.51456

1.54553

1.53436

1.56164

1.62415

1.63635

1-65161

1-64091

1.68955

1.48824

1.52350

1.56154

1.59339

1.61803

1.64112

1.62008

1.64633

1.67024

1.71231

1-71718 1.81208

1.74977

1.01596

1.04229

1.06812

1.09037

L-06812

1.04284

0.93554

1.01278

1.04225

1.08681

1.06498

1.07784

1.13370

Ν

13503

16200

18100

20000

21900

23600

25700

27900

30100

32700

35000

38040

41288

453141

458200

467600

480900

492300

501600

508900

514500

521700

528400

528500

528865

537663

164407

174900

179400

183100

186500

191000

194400

197300

196500

198300

204300

205334

210690

4403 6600

6800

7000

7100

7300

7300

7400

7200

7100

7100

7065 7174

Appendix Table 2, Part 2 - Continued

Appendix Table 2, Part 2 - Continued

LOC	YR	×6	× ₇	× ₈	×9	٧ ^B	N	LOC	YR	× ₆	× ₇	×8	x ₉	w ^B
11	59	359,845	3584.39	0.21019	.0029874	1.21014	374239	15	59	78.961	3220.46	0.52957	.0034350	L.11860
11	60	384.904	3774.50	0.21267	.0029728	1.22673	400300	15	60	88.847	3346-68	0.43707	.0031612	1.12330
i 1	61	395.481	3985.19	0.23137	00 30 708	1.24466	411300	15	61	92.269	3491.01	0.24674	.0031868	1.12784
ii	62	404.135	4167.72	0.20973	.0031763	1.75942	420300	15	62	95.691	3610.76	0.54141	.0031921	1.13311
ii	63	412.692	4329-10	0.19069	.0030219	1.27091	429200	15	63	100.253	3773.54	0.44306	.0035525	1.15199
11	64	423.558	4467.79	0.17559	.0028558	1.28027	440500	15	64	104.943	3916.58	0.46515	.0038768	1.16858
11	65	431.923	4485.51	0.17793	.0031656	1,28928	449200	15	65	106.717	3750.52	0-41999	.0045487	1.14610
ii	66	440.577	4530.06	0.26232	.0031929	1.29597	458200	15	66	107.985	3921-84	0.51167	.0050469	1.17287
11	67	446.827	4773.00	0.25330	.0031805	1.31930	464700	15	67	111.027	4196-00	0.37768	.0043607	1.19017
ii	68	457.212	4948.29	0.12731	.0037329	1.32572	475500	15	68	115.082	4202.93	0.41155	.0045815	1.18729
ii	69	469.519	5069.48	0.14309	.0033975	1.32630	488300	15	69	121.293	4537.09	0.43371	.0037409	1.20079
11	70	471.409	5198.37	0.15808	.0035103	1+34144	490265	15	70	123.086	4530.80	0.55260	-0039026	1-19745
ii	71	494.321	5314.49	0.14914	.0038787	1.33930	514094	15	71	129.324	4754.42	0.39214	+0038515	1-21464
12	59	80.800	3349.16	4 • 747 15	.0114851	1.49733	20200	16	59	26.059	3270.04	1.26890	.0085658	1.21775
12	60	92,520	3519.49	4.17551	. 0096844	1.47836	23130	16	60	30.893	3373.02	1-47349	.0076879	1.23409
12	61	97.560	3708.99	4.06967	.0068971	1.46268	24390	16	61	33.214	3494-18	1-67229	.0076344	1.25180
12	62	101.880	3872.36	2.96266	.0082057	1.44175	25470	16	62	35.714	3590.72	1.41886	.0075000	1.26804
12	63	105.840	3950.26	3.09506	.0076342	1.45956	26460	16	63	38.036	3892.06	1.17513	.0081690	1.28272
12	64	110.160	4008-45	2.25913	.0070443	1.47365	27540	16	64	40.536	4173.18	1.29490	.0087225	1.29673
12	65	L13.760	4087.99	3.21431	.0057665	1.46329	28440	16	65	43.036	3942.03	1.32000	•0092946	1.28605
12	66	117.360	3958.92	3.14470	.0061350	1.48283	29340	16	66	45.000	4018.04	0.70345	.0073413	1.31115
12	67	120.240	4607.00	2.28297	.0070858	1.63452	30060	16	67	45.000	4386.00	0.90223	.0076190	1.36716
12	68	123.840	4776.59	2.92929	.0052649	1.64638	30960	16	68	46.607	4409.76	0.97841	.0158621	1.22780
12	69	127.080	4772.77	2.08100	.0066100	1-64921	31770	16	69	48.571	4941.78	1.23969	.0064706	1.37332
12	70	129.572	4649.46	1.83486	.0064211	1.53436	32393	16	70	50.063	5016.30	1.31889	.0105939	1.38333
12	71	136.204	4713.78	1.90166	.0060204	1.60357	34051	16	71	53.641	5965.55	1-64923	.0081894	1.54556
13	59	48.597	3222.57	2.41749	.0119065	1.15761	47285	17	59	0.838	2959.92	1.17336	.0139188	1.16392
13	60	57.451	3369.86	2.40047	.0195170	1-17578	55900	17	60	0.897	3021-07	1.32039	.0166183	1.13831
13	61	62.487	3535.45	1.98166	.0266447	1.19526	60800	17	61	0.912	3087.83	1.49675	-0199184	1.11183
13	62	67.729	3675.11	2.75843	.0325948	1.21143	65900	17	62	0.929	3154-01	0.95127	.0230461	1.08263
13	63	72.562	3881.48	2.93906	+0201414	1.73563	70700	17	63	0.940	3263.49	1.39297	-0226139	1.08513
13	64	77.801	4028.51	2.76189	+0092470	1.25689	75700	17	64	0.951	3354.80	1.67667	-0221722	1_08809
13	65	82.939	3931-68	2.78759	.0105081	1.24130	80700	17	65	0.957	3446.17	1.84207	+0272568	1.16974
13	66	86.845	3975.95	2.23531	.0104024	1.26677	84500	17	66	0+966	3503.01	1.29815	.0242967	1.16396
13	67	91.367	4255+00	2.02868	.0096400	1.27327	88900 93100	17	67	0.964	3658.00	1.34614	.0276448	1.21901
13	68	95.683	4444.88	2.50628	.0099570	1.34709	101000	17	68	0.972	3789.27	1.40946	.0292720	1.19687
13	69	103.803	4830-05	1.94171	.0100000	1.31560 1.30257	105216	17	69	0.973	3698.59	1.65666	.0285277	1.14744
13	70	108.136	4974-64	1.68352	.0110630	1.32412	115254	17	70	0.979	4024.46	2-44289	-0242460	1.72236
13	71	118.452	4980-57	1.87339	.0097958	1.06079	10391	17	71	1.00	4102-47	1.71500	.0243744	1-21855
14	59	9.421	2719.41	1.10906	.0044269	1.08654	10400	18	59	237-14	4068-57	3.91643	.0121687	1.54769
14	60	9.429	2876.71	1.39196	.0059615	1.11287	10700	18	60	247.14	4226.55	3.50780	.0108671	1.55851
14	61	9.701	3049.74	1.47283	.0071963	1.13546	10900	18	61	252.86	4407.41	3.51897	-0098305	1.57303
14	62	9-882	3200.42	1.34537		1.10197	11100	18	62	260.00	4556.96	2.66495	.0087912	1-58494
14	63	10.063	3258.20	1.50812	.0078378 .0071053	1.06115	11400	18	63	265.71	4739.68	3.04864	.0119355	1.62631
14	64	10.335	3298-84	1.44027	.0065517	1.12608	11600	18	64	268.57	4897.57	4.89238	.0151064	1.66268
14	65	10.517	3386.13	1.61252	.0048739	1.14891	11900	18	65	271.43	4747.41	3-31928	.0137895	1.63424
14	66	10.789	3573.15	1.38375	.0052991	1.28699	11700	18	66	272.86	4913-83	3.31280	.0131937	1.66925
14	67	10.607	3954.00	1.50763	.0055556	1.28056	11700	18	67	272.86	5056.00	4.35707	-0140314	1.67777
14	68	10.607	4104.39	1.62979	.0034646	1.31230	12700	18	68	278.57	5241.95	3.87622	.0125128	1.15800
14	69	11.514	4244.13	1-69539	.0032142	1.31373	12756	16	69 70	294.29	5042.25	2.71516	.0156311	1.72631
14	70	11.565	4173.01	1.34321 1.23116	.0021864	1.39728	13264	18 18	70 71	294.66	5832.43	2.93802	.0139630	1.73772
14	71	12.025	4603.36	1 * 5 31 10	******	1011120		10	11	304.06	5932-86	3.03211	.0161624	1.78310

N

Appendix Table 2, Part 2 - Continued

	YR	× ₆	×7	×8	×9	w ^B	N	LOC	YR	× ₆
19	59	79.73	3721.52	0.30770	.0179960	1.45843	205546	24	59	26.936
19	60	89.72	3929.40	0.34522	.0165499	1.50881	231300	24	60	28.876
19	61	94.65	4158.73	0.30210	.0162131	1.56050	244000	24	61	29.845
19	6Z	99.57	4359.70	0.28674	.0159135	1.60772	256700	24	62	30.814
19	63	104-46	4546-03	0.20874	.0153063	1.63862	269300	24	63	31.783
19	64	109.46	4708.55	0.18080	.0147378	1.66516	282200	24	64	32.558
19	65	114.39	4650.10	0.24229	.0166056	1.64870	294900	24	65	32.946
19	66	118.70	4680.36	0.21532	.0149150	1.67238	306000	24	66	33.333
19	67	121.30	4880.00	0.14048	.0141861	1.64676	312700	24	67	33.721
19	68	125.45	5086.83	0.14511	.0114100	1.69982	323400	24	68	34-884
19	69	132.27	5383.10	0.16225	.0114076	1.75319	341000	24	69	36.337
19	70	135-37	5711.96	0.19925	.0107939	1.78538	348993	24	70	36.571
19	71	144.32	5838.34	0.22182	.0136057	1.85613	372049	24	\vec{n}	37.508
	59	1124.91	3541.14	0.32243	.0101675	1.36251	323973	25	59	109.346
21	50	1313.89	3650.16	0.33018	.0088372	1.40155	378400	25	60	132.935
21		1364.58	3779.89	0.28030	.0086387	1.44226	393000	25	61	139.420
21	61	1415.63	3881.86	0.38811	.0084498	1.47975	407700	25	62	146-075
21	62	1465.63	4045.50	0.23488	.0087349	1,51728	422100	25	63	152.730
21	63	1515.28	4189.02	0.17150	+0090032	1.55277	436400	25	64	159.215
21	64	1563.19	4064.18	0.20633	.0097823	1.53024	450200	25	65	165.870
21	65	1603.47	4063.13	0.16117	.0095539	1.50944	461800	25	66	170.648
21	66		4294.00	0.12279	.0105208	1.54563	474300	25	67	176.621
21	67	1646.88	4473.17	0.18165	-0108967	1.56995	497400	25	68	186.177
21	68	1727.08	4615-02	0.16465	.0116078	1.56208	515000	25	69	200.341
21	69	1788.19	4683.88	0.22295	.0106427	1.58189	522329	25	70	205.483
21	70	1813.64	4787.10	0.21679	.0113535	1.58514	553926	25	71	217.930
21	71	1923-35	2589+66	1.51632	.0472280	1.50034	17659	25	59	160.962
22	59	706.36	2881.98	0.54481	.0444075	1-45535	18060		60	
22	60	722.40 727.200	3190.48	2.09700	.0424092	1.41142	18180	26	61	174.759
22	61 62	366.000	3475.74	2.66783	.0403825	1.35251	18300	26 26	62	182-483
22	. –	367.200	3568.25	2.68961	.0418301	1.46290	18360			190.207
22	63	368.400	3643.08	2.70425	.0432139	1.55966	18420	26	63	197.655
22	64	368.400	3427.54	2.64687	.0448426	1.63616	18420	26	64	205.655
Z2	65	369.600	3537.07	2.74514	.0436688	1.69023	18480	26	65	213.793
22	66		3706-00	Z+14314 Z+64858	.0450820	1.75615	18300	26	66	223.862
22	67	366.000 366.000	4068.29	1.76054	.0398907	1.70199	18300	26	67	223.586
22	68		4602.82	1.83896	.0397059	1.75517	18360	26	68	225.931
22	69	367.200	4151.27	2.58669	.0446270	1.90477	18621	26	69	230.621
22	70	372.420	4169.61	2.60093	.0403839	1.69498	19587	26	70	233.759
22	71	391.740	3012-66	1,26349	.0014500	1.70237	33794	26	71	242.572
23	59	112.647	3265-54	2.06359	.0015113	1.25676	37715	28	59	11.029
23	60	125.717		1.41108	.0016607	1.30986	39140	28	60	11-111
23	61	130.467	3536.51	1.11566	.0017996	1.35854	40565	28	61	11.111
23	62	135.217	3781.65	1.06617	.0030177	1.37393	42085	28	62	11+111
23	63	140-283	3873.02		.0041460	1.38640	43415	28	63	11.111
23	64	144.717	3945.09	1.32916	.0045718	1.35141	44840	28	64	11.111
23	65	149.467	3960-66	1.30642	.0041094	1.38357	45505	28	65	11.040
23	66	151.683	3830-66	1.38473	.0045805	1.41185	45410	28	66	10.969
23	67	151.367	4070.00	2.10291	.0056563	1.45420	45790	28	67	10.897
23	68	152.633	4284.88	1.09782		1.60103	47800	28	68	11.111
23	69	159.333	4413.15	0.76213	.0051255	1.46348	48294	28	69	11.325
23	70	160.980	4615.04	1.01582	.0028161		49841	28	70	11.458
23	71	166.137	4868.37	1.00113	.0022672	1.45344	47071	28	71	11.595

Appendix Table 2, Part 2 - Continued

24 24 24 24 24 24 24 24 24 24 24 24 24 2	59 60 61 62 63 64 65 65 65 65 67 68 69 70	26.936 28.876 29.845 30.814 31.703 32.558 32.946 33.333 33.721 34.884	3609.70 3602.74 3614.81 3599.16 4178.84 4737.06 5518.63 5022.04 5315.00	0.52544 0-66562 0.64461 0.45167 0.58295 0.73515 0.51649	.0007195 .0006711 .0006494 .0006289 .0006098 .0005952	1.16697 1.20460 1.24174 1.27391 1.28275 1.28940	27798 29800 30800 31800 32800
24 24 24 24 24 24 24 24 24 24 24 25	61 62 63 64 65 66 67 68 69	29.845 30.814 31.703 32.558 32.946 33.333 33.721 34.884	3614.81 3599.16 4178.84 4737.06 5518.63 5022.04	0.64461 0.45167 0.58295 0.73515	-0006494 -0006289 -0006098 -0005952	1.24174 1.27391 1.28275	29800 30800 31800
24 24 24 24 24 24 24 24 24 25	62 63 64 65 66 67 68 69	30.814 31.703 32.558 32.946 33.333 33.721 34.884	3599.16 4178.84 4737.06 5518.63 5022.04	0.45167 0.58295 0.73515	-0006289 -0006098 -0005952	1.27391 1.20275	31800
24 24 24 24 24 24 24 24 24 25	63 64 65 66 67 68 69	31.,783 32.558 32.946 33.333 33.721 34.884	4178.84 4737.06 5518.63 5022.04	0.58295 0.73515	-0006098 -0005952	1.28275	31800
24 24 24 24 24 24 24 24 25	64 65 66 67 68 69	32.558 32.946 33.333 33.721 34.884	4737.06 5518.63 5022.04	0.73515	.0005952		
24 24 24 24 24 24 24 25	65 66 67 68 69	32.946 33.333 33.721 34.884	5518.63 5022.04			1.20040	
24 24 24 24 24 24 25	66 67 68 69	33.333 33.721 34.884	5022.04	0.51649		14/0340	33600
24 24 24 24 24 25	67 68 69	33.721 34.884			.0008824	1.30502	34000
24 24 24 24 25	68 69	34-884	5315 00	0.60443	.0014244	1.26309	3440(
24 24 24 25	69		1111400	0.71957	.0020402	1.28226	34800
24 24 25			5557.07	0.71450	.0023889	1.32810	36000
24 25	70	36.337	5614.08	0.77112	.0026400	1.33580	37500
25		36.571	5718.30	0.74309	.0025437	1.35763	3774
25	71	37.508	5707.60	0.64108	.0038752	1.38408	3870
	59	109.346	3420.89	0.58463	.0139832	1.32694	6407
25	60	132.935	3566.91	0.71692	.0119255	1.36884	7790
25	61	139.420	3732.28	0.79669	.0117870	1.41118	6170
25	62	146.075	3871.31	0.65490	.0116355	1.44783	8560
25	63	152.730	4065.61	0.68450	.0122570	1.45537	8950
25	64	159.215	4240.76	0.75469	0128296	1.46010	9330
25	65	165.870	4066.25	0.78839	.0133745	1.41225	9720
25	66	170.648	4057.11	0.73083	.0139200	1.41157	10000
25	67	176.621	4281.00	1.02943	.0147923	1.42411	10350
25	68	186.177	4432.20	0.70236	.0153437	1.43032	10910
25	69	200.341	4632.86	0.56112	.0135775	1.46222	11740
25	70	205.483	4704.71	0.42985	.0128558	1.45521	12041
25	71	217.930	4690.8L	0.37062	.0133665	1.43716	12770
26	59	160.962	3034.81	0.88653	.0161100	1.31426	9335
26	60	174.759	3184.40	1.00984	.0155189	1.37027	10136
26	61	182.483	3351.32	0.80702	.0155140	1.42789	10584
26	62	190.207	3494.73	1.07268	.0155094	1.47822	11032
26	63	197.655	3802.12	0.78607	.0160328	1.62218	11464
26	64	205.655	4089.76	0.86710	.0164738	1.74772	11928
26	65	213.793	4098.34	0.73284	.0165161	1.73011	12400
26	66	223.862	4107.21	0.77676	.0179375	1.74700	12984
26	67	223.586	4354.00	0,72690	.0188387	1.82415	12968
26	68	225.931	4448.78	0.72777	-0190171	1.85703	13104
26	69	230.621	4553.05	0.72512	.0155652	1.91303	13376
26	70	233.759	4568.84	0.93444	.0191400	1.79594	13558
26	71	242.572	4553.00	0.73202	.0192904	1.77054	14069
28	59	11.029	2652.95	0.57629	.0017221	1.03291	1161
	5- 7 60						
28	61	11.111	2773.45	0.66674	.0017094	1-04375	1170 1170
28			2908.99	0.78488	.0017094	1.05322	
28	62	11.111	3022.15	0.76472	.0017094	1.06292	1170
28	63	11.111	3208.47	1.06200	.0017094	1.09198	1170
28	64	11.111	3378.04	1.81888	•0017094	1.11772	1170
28	65 44	11.040	3768.82	1.91534	.0017204	1.11820	1162
28	66	10.969	3443.89	1-86178	.0017316	1-11442	1155
28	67	10.897	3163.00	1.28401	.0017429	1.13126	1147
28	68	11.111	3409.76	1.79415	-0100855	1-22437	1170
28	69 70	11.325	3515.49	1.77030	+0109853	1.20914	1192
28 28	70 71	11.458 11.595	3597.83 4021.20	1.95488 2.00543	.0016577 .0075348	1.19490 1.20608	1206

76

Appendix Table 2, Part 2 - Continued

Appendix Table 2,	Part 2 -	Continued

LOC	YR	× ₆	×7	×8	×9	w ^B	N
29	59	448.526	3703.59	0.00000	.0035339	1.47768	197800
29	60	426.982	3853.53	0.00000	.0033617	1.51564	188299
9	61	404.082	4024.34	0,00000	.0031874	1.55669	178200
9	62	434.014	4166.67	0.00000	+0026228	1.59111	191400
9	63	404.082	4288.89	0.00000	.0030135	1-61344	178200
9	64	415.873	4389.65	0.00000	.0031189	L-63127	18340
9	65	426.304	4282.61	0.00000	.0029468	1.61194	188000
9	66	416.553	4502.00	0.00000	-0023244	1.67200	18370
9	67	400.680	4783.00	0.00000	.0025693	1.70294	17670
9	68	408.163	4860.00	0.00000	.0030889	1.72217	180000
9	69	415.193	4885.45	0.00000	.0040360	1-71160	18310(
9	70	425.776	4915.76	0.00000	.0052725	1.71047	187767
9	71	406.803	5099.82	0.00000	.0042754	1.75088	
1	59	66.041	5145.57	3.73988	+0009409	1.26914	179400
ii -	60	89.926	5346-68	1.53873	+0009291	1.33384	132848
1	61	91.438	5576.72	1-51969	.0009350		138846
ii –	62	92.949	5765.82	1.91597	-0009476	1.39810	141180
)î	63	94.461	5875.13	1.99690		1.45459	143514
și -	64	95.973	5958.02	1.93332	-0009599	1.48930	145848
ŝī	65	97.484	5929-61		.0009650	1.51963	148102
si -	66	98.996		1-94156	-0011427	1.53679	150516
1	67	100.508	6124-25 6310-00	1.85520	-0014066	1.51713	152850
51	68			1-81037	-0012437	1.51846	155184
1	69	102.019 103.531	6552.20	1-65733	.0012443	1.55910	157518
	70		6565-26	1.82093	.0014013	1.57197	159852
81 81	-	105.042	6680.25	1.87655	.0019299	1-58676	162185
	71	108.873	6989.40	1.99391	.0020940	1.60515	168100
2	59	176.255	3339-66	0.00000	-0022949	1-22978	47060
32	60	181.854	3460.48	0.00000	.0023684	L.25455	48555
12	61	185.974	3600.00	0.00000	-0024771	1.28741	49655
2	62	190.094	3713.08	2.03676	+0025613	1.31537	50755
2	63	194.213	3984-13	0.40814	+0031048	1.30828	51855
2	64	198.333	4234.42	0.90300	.0036068	1.30124	52955
12	65	202.453	4092.13	0.00000	-0039034	1.29946	54055
2	66	206.573	4170.34	0.59770	.0041701	1.36456	55155
2	67	210.693	4376.00	0.21424	+0043018	1.37906	56255
2	68	214.813	4624.39	0.13588	.0040973	1.40275	57355
2	69	218.933	4703.29	0.64252	.0038833	1-40952	58455
2	70	223.049	4700.18	0.55059	.0040132	1.41176	59554
2	71	227.172	4914.31	0.00000	+0039403	1-43034	60655
3	59	668.521	3829.11	0.00000	-0017190	1.33167	318216
3	60	702.523	4013.70	0.00000	.0017494	1.35012	334401
3	61	728.779	4220.11	0.00000	.0017930	1.37105	346899
3	62	755+036	4394.51	0.00000	.0018364	1-39014	359397
3	63	781.292	4606.35	0.00000	.0015515	1.43473	371895
3	64	807.548	4794.09	0.00000	.0012851	1.47447	384393
3	65	833.805	4760.87	0.00000	.0016528	1-46747	396891
3	66	860.061	4851.70	0.00000	.0016977	1.49120	409389
3	67	886.317	5173.00	0.00000	.0024651	1.56827	421887
3	68	912.574	5347.32	0.00000	.0019890	1.61548	434385
3	69	938.830	5345-54	0.00000	+0025309	1.60025	446883
3	70	965.086	5461.05	0.00000	+0027755	1.61512	
3	n	991.342	5549.47	0.00000	.0030749		459381
-			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.00000	+0030149	1.62150	471879

LOC	YR	× ₆	×7	×8	×9	WB	N
34	59	153.223	3709.92	0.11260	.0126259	1.37347	98369
34	60	168.600	3835.62	0.16550	+0112989	1-41834	108241
34	61	184.212	3.982.01	0.19059	.0101806	1.46477	118264
34	62	199.824	4100-21	0.11676	.0092371	1.50762	
34	63	215.436	4265.61	0+11942	.0079531	1-52343	128287
34	64	231.048	4408.66	0.16208	.0068360	1.53823	138310
34	65	246.660	4277.43	0.06585	.0064791	1.51951	148333
34	66	262.273	4390.78	0.00000	.0071030	1.52910	158356
34	67	277.885	4633.00	0.00000	+0065078		168379
34	68	293.497	4949-27	0.00000	+0063633	1-56065	178402
34	69	309.109	4980.28	0.00458	.0032553	1.59222	188425
34	70	324.720	4877.72	.209063	•00390944	1.60922	198448
34	71	340.333	5017.67	.199163	.00368889	1.59060	208470
35	59	262.548	3216.24	.169785	.00558824	1.61186	218494
35	60	329.027	3300.32	.199884		1.19912	68000
35	61	372.201	3402.12	.139795	-00472905	1.23111	85218
35	62	401.158	3478.90	.161964	-00442946	1.26239	96400
35	63	430-116	3680.42	.151539	+00433109	1.28936	103900
35	64	462.548	3862.72	.145023	-00354578	1.30491	111400
55	65	490.734	3734.99	•166560	.00282972	1.31827	119800
15	66	530.888	3552.10	+129896	.00325728	1.31288	127100
35	67	568.340	3611.00		+00271273	1-22942	137500
5	68	603-089	3754-15	-112731	.00293478	L.23283	147200
15	69	650.579	3848.83	-120483	.00243918	1.31015	156200
15	70	664.502		.076901	.00250445	1.28125	168500
5	71		3915.76	.086840	.00296910	1-29029	172106
		693.436	4009.72	.088329	-00305122	L-16706	179600

78

,

Appendix Table 3: Amount and Cost (\$) per Acre of Temporary Control Work

Appendix Table 4: Amount and Cost Per Acre of Permanent Control Work

.00	Year	Acres	\$/Acres	LOC	Year	Acres	\$/Acres
 1	1969	743,889	.215993	15	1969	227,241	. 106424
I		555,786	.247869		1970	200,839	.149314
	1970		.169822		1971	253,286	.239488
	1971	1,427,126	.109022				
2	1969	176,306	.183363	16	1969	-	0
2	1970	178,673	.220632		1970	144,173	.101656
	1971	277,875	.228520		1971	311,337	.072356
	1971	277,075					
3	1969	467,929	.097630	17	1969	1,456,668	.147767
2	1970	513,366	.144472		1970	1,264,739	.147279
	1971	753.077	113853		1971	1,856,369	.144785
	\$979	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
4	1969	852,851	.081680	18	1969	85,624	.068649
4	1970	770,524	.095416		1970	89,641	. 101483
		806,403	.054230		1971	83,976	.061291
	1971	000,403	.0),2)0				
-	1060	1,196,744	.117885	19	1969	137,776	. 196173
5	1969		.119782		1970	86.083	.331262
	1970	1,364,500	.130774		1971	106,261	. 280573
	1971	1,799,026	-170/1-				
-	10/0	698,517	.090622	21	1969	1.074.518	.079684
7	1969		.127153		1970	1,021,287	. 157155
	1970	1,243,265	.095147		1971	1,144,090	. 171721
	1971	1,235,231	.035147		1221	.,,-,-	•
0	10(0	339,443	.082409	22	1969	280,679	.085514
8	1969		.088895		1970	160,825	.088817
	1970	383,790	.149041		1971	213,446	. 094183
	1971	270,938	.149041			••	
10	1969	115,637	.063794	23	1969	476,365	.088394
10	1969	88,727	.076425	-	1970	501,211	.098926
	1970	132,606	.068436		1971	884,088	.047988
	1971	1 52,000	.000430				
• •	1069	1,307,697	.085924	24	1969	304,049	.06024;
11	1969		.108315		1970	353,584	.059052
	1970	1,000,904	.094854		1971	390,520	. 05528
	1971	1,050,690	.034034				
	10(0	963 700	. 147048	25	1969	371,637	. 08923
12	1969	243,709	.114522	- /	1970	375,679	.09380
	1970	294,712	. 103442		1971	493,296	.08653
	1971	430,347	.105442		1271		
• •	10/0	017 961	. 319499	26	1969	296,535	. 23007
13	1969	917,861	.341401	20	1970	327,005	.27012
	1970	726,559			1971	664,316	.22233
	1971	2,038,853	. 184274		1711		
		101 010		28	1969	225,261	.07157
14		121,212	A£8133	20	1970	202,730	07616
	1970	123,273	.068133		1970	159,438	08651
	1971	130,209	.072099		1971	177,70	

LOC	Year	Acres	\$/Acres	LOC	Year	Acres	\$/Acres
1	1966 1967 1968	702.6 387.8 367.1	37.514 31.447 37.135	10	1967 1968 1969	61.62 7.64 16.55	45.699 77.092 73.351
	1969 1970 1971	575.1 661.8 617.2	35.385 44.422 42.452		1970 1971	0.00 0.00	73.351 73.351
2	1966 1967 1968 1969 1970 1971	258.2 265.2 244.4 251.6 249.6 135.9	69.333 51.585 83.015 74.462 94.946 132.700	11	1966 1967 1968 1969 1970 1971	240.52 300.82 109.76 47.51 170.61 37.61	49.616 64.978 105.701 76.867 80.351 123.540
3	1966 1967 1968 1969 1970 1971	532.0 71.9 598.2 402.2 151.9 337.6	40.462 42.923 30.988 58.043 49.153 38.973	12	1966 1967 1968 1969 1970 1971	50.36 195.38 74.20 32.97 35.52 26.57	98.001 57.892 161.363 359.560 228.686 349.588
4	1966 1967 1968 1969 1970 1971	242.9 242.4 158.2 181.0 182.4 192.9	54.319 53.124 86.759 68.019 87.238 75.333	13	1966 1967 1968 1969 1970 1971	604.85 527.74 466.62 465.34 386.99 475.38	69.435 139.591 161.272 168.037 178.895 95.298
5	1966 1967 1968 1969 1970 1971	108.24 165.90 114.75 11.49 0.00 0.00	39.853 34.298 31.355 151.944 151.944 151.944	34	1966 1967 1968 1969 1970 1971	26.71 37.68 31.36 24.08 36.90 16.49	91.914 79.622 84.225 112.300 74.910 159.655
7	1966 1967 1968 1969 1970 1971	480.94 406.74 310.64 520.18 341.46 459.13	93.585 119.146 111.733 92.241 111.836 98.676	15	1966 1967 1968 1969 1970 1971	251.09 291.21 98.97 165.24 59.62 45.27	47.376 33.337 64.240 67.406 152.206 35.143
8	1966 1967 1968 1969 1970 1971	68.11 89.12 108.08 167.19 37.55 27.85	275.411 288.850 99.028 106.664 298.815 380.005	16	1966 1967 1968 1969 1970 1971	80.88 88.15 51.15 27.47 175.10 66.25	45-553 21.528 50.686 0.000 32.296 39.044

•

Appendix Table 4 (Continued)

-0C	Year	Acres	\$/Acre	LOĊ	Year	Acres	\$/Acre
17	1966	608.83	45.873	23	1966	168.77	196.466
•	1967	513.51	53.590		1967	83.49	243.404
	1968	186.33	106.266		1968	33.49	400.335
	1969	96.58	143.768		1969	5.94	145.461
	1970	123.58	184.423		1970	101.26	114.539
	1971	210.63	110.044		1971	0.00	114.539
18	1966	195.55	12.472	24	1966	47.32	161.340
	1967	131.45	26.443		1967	30.27	346.23
	1968	98.87	49.407		1968	13.52	435.042
	1969	158.95	24.746		1969	9.65	537.63
	1970	96.87	75.488		1970	13.60	274.37
	1971	162.04	23.644		1971	17.18	204.759
19	1966	357.26	45.131	25	1966	819.75	18.30
	1967	288.92	51.053		1967	682.57	21.04
	1968	452.34	31.301		1968	719.12	16.25
	1969	444.79	38.497		1969	614.89	28,25
	1970	196.51	51.874		1970	571.28	21.46
	1971	105.34	66.859		1971	171.74	28.43
21	1966	493.54	56.237	26	1966	330.85	111.26
	1967	573.84	65.872		1967	439.68	B6.29
	1968	716.08	52.796		1968	443.58	125.50
	1969	717.69	58.146		1969	452.31	144.92
	1970	515.59	85.591		1970	387.86	163.31
	1971	525.42	76.535		1971	526.91	125.11
22	1966	144.88	49.416	28	1968	153.12	34.20
	1967	242.58	56.649		1969	158.07	39.42
	1968	139.89	53.631		1970	276.02	20.19
	1969	198.08	76.095		1971	267.30	21.22
	1970	177.50	111.654				
	1971	269.93	43.722				

Appendix Table 5: Comparison of Mosquito Monitoring Data: light trap counts, landing counts and complaints

Obs.	Light Traps ^a	Landing Counts ^b	Complaints ^C
	<u>Chatham Cou</u>	nty, Georgia	
1	50.6	1.10	7.2
1 2 3 4 5 6 7 8 9	24.3	0.90	5.4
3	39.6	1.00	7.0
4	13.5	0.04	0.6
5	18.4	1.30	0.6
6	13.6	0.40	6.4
7	23.8	0.20	4.4
8	19.1	0.30	8.0
	6.4	0.30	7.0
10	10.9	1.29	4.0
	<u>E. Volusia</u>	, Florida	
11	31.2	5.40	
12	60.2	7.00	
13	231.6	10.60	
14	68.7	6.60	
15	86.8	5.20	
16	22.4	4.80	
17	63.9	2.90	
18	54.5	3.40	
19	61.0	4.20	
20	71.6	2.70	
21	34.1	3.40	
22	62.8	6.60	

а Mean по. mosquitoes per light trap night

 $^{\rm b}_{\rm Mean}$ no. mosquitoes landing on a person per minute

^CMean no. phone calls per day

Appendix Table 6: Labor's Share of Direct Field Expenditures $(B_{\rm f})$

Appendix Table 8: Mosquito Abatement Regression Estimates for Single Equation Least Squares Model. Sample size (n) = 390

Location	Labor's Share of Expenditures	Location	Labor's Share of Expenditures
Brevard	. 36	Nassau	. 46
Broward	.56	Palm Beach	.43
Charlotte	. 36	Pinellas	. 42
Citrus	.25	St. Johns	. 41
Collier	. 19	St. Lucie	. 37
Duval	. 46	Santa Rosa	.31
Escambia	. 46	Sarasota	. 36
Franklin	.25	Volusia	.51
Hillsborough	.29	Walton	.29
Indian River	. 46	Chatham	.50
Lee	.31	Delaware	. 45
Levy	. 32	Cape May	. 41
Manatee	. 19	Monmouth	. 40
Martin	.29	Ocean	. 44
Monroe	.22	Virginia Beach	.25

Appendix Table 7: Wholesale Price Index (1967 = 300)

	Wholesale		Wholesale
Year	Price Index	Year	Price Index
1959	94.8	1966	99.8
1960	94.9	1967	100.0
1961	94.5	1968	102.5
1962	94.8	1969	106.5
1963	94.5	1970	110.4
1964	94.7	1971	113.2
1965	96.6		

Independent Variables	Dependent Variables			
	Number Mosquitoes (Y ₁)	Acres Chemical Control (Y ₂)	Acres Permanent Contro) (Y ₃)	Local Expenditure (Y ₄)
Intercept	5.206	0.381	1.635	-6.977
No. Mosquitoes (Y ₁)		0.036* (1.857)		0.076*** (2.619)
Acres Chemical Control (Y ₂)	-0.044 ^{8,6} (-0.546)		-0.181** (-2,422)	,
Acres Chemical ^{(Y} 2z-1)		.762*** (24,195)		
Storm Rain (X ₁)	0.031 (0.700)			
Sequence Rain (X ₂)	0.1)6*** (4.211)			
Temperature (X ₃)	-0.328 (-0.130)			
Stock Permanent Control (X ₄)	-0.180*** (-4.285)		0.783*** (25.484)	
Budget (X ₅)		0.218*** (5.904)		
Population Density (X ₆)		-0.027* (-1.702)		
Income (X ₇)				1,563*** (7,208)
State Grants (X ₈)				0.356*** (8.327)
Tourism (X ₉)				0.344*** (9.064)
Wage Rate (W ⁸)				-1.827*** (-5.604)
Population (N)				-0.333***
Coefficient Hult. Det., R ²	.684	. 801	. 652	(-7.681) .686
F Value Regression F	22.614	386.339	362.256	139.246

^aThe values in parenthesis are the t values

A one-tailed t test was used since <u>a priori</u> Information indicates the direction of the effect of each predetermined variable upon the dependent variable. The .01, .05 and .10 levels of significance are considered relevant throughout this report and are designated by ***, **, and * respectively.